
Evolutionary and Collaborative Software Architecture

Recovery with Softwarenaut

Mircea Lungu

Software Composition Group - University of Bern, Switzerland

Michele Lanza

REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Oscar Nierstrasz

Software Composition Group - University of Bern, Switzerland

Abstract

Architecture recovery is an activity applied to a system whose initial
architecture has eroded. When the system is large, the user must use ded-
icated tools to support the recovery process. We present Softwarenaut –
a tool which supports architecture recovery through interactive exploration
and visualization. Classical architecture recovery features, such as filtering
and details on demand, are enhanced with evolutionary capabilities when
multi-version information about a subject system is available. The tool al-
lows sharing and discovering the results of previous analysis sessions through
a global repository of architectural views indexed by systems.

We present the features of the tool together with the architecture recovery
process that it supports using as a case-study ArgoUML, a well-known open
source Java system.

Keywords: Architecture Recovery, Visualization, Reverse Engineering,
Software Tools

1. Introduction

Maintaining a software system implies a continuous effort to keep it up to
date with the unanticipated changes in its environment [1]. Having therefore

Preprint submitted to Science of Computer Programming March 21, 2012

a clear and current understanding of the architecture of a system is critical
for its maintenance and evolution [2, 3].

In the case of large software systems the architecture is specified through
multiple architectural views that correspond to a set of given architectural
viewpoints. An architectural viewpoint is a pattern or template from which to
develop individual views by establishing the purposes and audience for a view
and the techniques for its creation and analysis. Different authors propose
different viewpoints [4, 5, 6] but the consensus is that multiple viewpoints
are necessary for capturing all the various facets of a system.

As a system evolves, its architecture erodes [7] and an architectural mis-
match arises between the as-defined and as-is architecture [8]. One accom-
panying property of this continuous drift between the actual and the defined
architecture of the system is an increasing brittleness of the system [7]. The
main reason for architectural erosion and drift is widespread lack of program-
ming language support for expressing the architecture, as well as the lack of
tools that associate architectural decisions with the source code.

When the drift and erosion have brought the system architecture away
from the initial state, the solution is to recover the architecture of the sys-
tem from the source code. Jazayeri defined architecture recovery as “the
techniques and processes used to uncover a system’s architecture from avail-
able information” [9].

While some steps of architecture recovery, such as static analysis and fact
extraction, can be automated, the process requires human intervention and
in this context adequate tool support is crucial. From the multiple existing
architectural viewpoints the architecture recovery tools focus on recovering
module and connector views through visualization and interaction [10, 11,
12].

Figure 1 presents the general architecture of any architecture recovery
tool. Softwarenaut relies on external tools for the first step and provides
support for the second and third steps:

• Step 2: Information Aggregation. The tool takes into account the hier-
archical decomposition of a system as a basis for aggregating artifacts
and relationships. In the case of a missing hierarchical decomposition
the tool can automatically generate one. When multiple versions of a
system are available the tool takes them into account to create a history
by fully modeling each individual version.

2

Information
Abstraction

Aggregate low-level
artifacts vertically along the
containment hierarchy of the
system and across versions.

Fact
Extraction

Extract low-level artifacts
and relationships between

them.

Interactive
Exploration

Recover architectural views
through exploration.

Filter irrelevant information.
Save views. Share views.

Softwarenaut

Figure 1: Softwarenaut addresses the last two phases of an extract-abstract-view process

• Step 3: Interactive Visualization and Exploration. The tool allows for
interactive exploration built around the “overview, zoom and filter,
then details on demand” information visualization mantra [13]. It pro-
vides a variated range of filtering mechanisms and allows the recovered
architectural views to be shared between users and tools.

The following are several of the contributions of the tool to the state of
the art in architecture recovery:

• Supporting multi-version analysis of software systems and enhancing
the exploration, filtering, and details on demand capabilities with evo-
lutionary information.

• Providing support for collaboration by allowing users to publish and
discover previously published architectural views which are indexed by
the analyzed system.

• Providing a rich set of interactive navigation and visualization features
that are required for architecture recovery [14] in the context of an open
and extensible architecture.

Structure of the article. We start with describing the particularities of the
tool in two of the phases of architecture recovery: information aggregation
(Section 2) and interactive exploration (Section 3). In Section 4 we discuss
the integration of evolutionary analysis in Softwarenaut. In Section 5 we
show how sharing architectural views enables collaboration. In Section 6

3

we discuss architectural considerations and in Section 7 we discuss the tool-
building experience. In Section 8 we present related work and in Section 9
we conclude and outline future work.

2. Information Abstraction

The fundamental technique that enables abstraction in Softwarenaut is
aggregating horizontal relationships between software artifacts along the con-
tainment relationships.

Figure 2 exemplifies the aggregation of low-level relationships between
methods and classes along the containment hierarchy of a Java system. The
case study is ArgoUML1 and the figure focuses on the relationships between
four classes from three different packages: uml, uml.kernel, uml.ui, and per-
sistence. All these packages contain many classes but the visualized entities
are sufficient for illustration purposes.

persistenceuml

ui

actionPerfor
med

Action
OpenProject

getExtension

AbstractFile
Persister

getInstance

Persistence
Manager

getCurrent
Project

Project
Manager

kernel

Implicit Dependency

Explicit dependency
(e.g. Method Call)

Figure 2: The aggregation of explicit dependencies into implicit ones along the containment
hierarchy of methods, classes, and packages in several classes from the ArgoUML case
study.

The figure contains three method calls that can be obtained through static
analysis of the system: the method calls between actionPerformed and re-

1Throughout this article we will continue using ArgoUML as a case study. When we
do not specify otherwise we refer to version 0.24.

4

spectively getCurrentProject, getInstance, and getExtension. These explicit
relationships propagate as implicit relationships vertically along the contain-
ment relationships that exist between methods, classes and packages. Some
of the implicit relationships that can thus be derived are the dependencies
between the ui package and the PersistenceManager class as well as the de-
pendency between the uml package and the persistence package.

Aggregating explicit relationships across the hierarchy has a worst case
order of complexity of O(n2) [15]. Even if in real systems there are never
relationships between all the leaves of the tree, so the worst case scenario
is never encountered, it is common that for non-trivial systems, the on-the-
fly computation of the dependencies can make interactive analysis sluggish.
To enable interactivity on large systems it is efficient to pre-compute the
dependencies between the nodes in the hierarchy [15].

*
*

*

*
Relationship

Composite Leaf

2

Explicit
Relationship *

Implicit
Relationship

Hierarchical
Graph

TreeNode

entity:
ModelEntity

relationship:
ModelRelationship

from, to:
TreeNode

ModelEntity

Class Method Package

...

ModelRelationship

Invocation Inheritance Access

...

Figure 3: The hierarchical graph model in Softwarenaut.

The data structure that Softwarenaut uses to keep track of the pre-
computed dependencies in a software system is a hierarchical graph. The
data structure is central to the architecture of the system itself. Figure 3
presents a class diagram of the classes that implement the concept. The
figure shows that a hierarchical graph contains two types of entities:

Tree Nodes. These are the wrappers of ModelEntities — artifacts in a
software system that can be organized hierarchically in a containment

5

tree. The diagram shows that the tree is implemented using a Compos-
ite design pattern. The objects that the leaves wrap depend on the type
of analysis and available data (in some cases they are classes, and in
some others they are methods and instance variables). The composite
entities are higher-level entities which are either declared in the pro-
gramming language (such as namespaces and packages) or are obtained
as a result of analysis (such as clusters resulting from the hierarchical
clustering of the leaves).

Relationships. There are two types of relationships: explicit and implicit.

Explicit Relationships are extracted using both static and dynamic
analysis. They often exist between the leaves of the tree (e.g., invo-
cations between methods) but not necessarily so (e.g., the inheritance
relations between classes in a tree which contains both methods and
classes). Explicit Relationships wrap actual relationships that are part
of the model and which are subclasses of Model Relationship.

Implicit Relationships are derived from the explicit relationships by
aggregating them along the containment tree.

The static analysis of object-oriented system has limitations. One of them
is that some dependencies cannot be unequivocally resolved. In the presence
of a method that is defined in a base class and overridden in the subclasses
it is impossible to know by static analysis to which of the classes a method
call will be directed. The decision will be taken by the model extractor.
Whatever the decision, the relationships that are extracted by the extractor
will be modeled in the hierarchical graph with explicit relationships.

3. Interactive Exploration

The UI of Softwarenaut contains three linked complementary visual per-
spectives that present information about a system during the exploration.
The linked perspectives support the “overview first, zoom and filter, and
details on demand” architecture for information visualization tools proposed
by Shneiderman [13].

Figure 4 presents Softwarenaut during an analysis session on ArgoUML.
The three complementary views that the tool provides are highlighted in the
figure:

6

The
Architectural

View

The
Inspector

Panel

The
Overview

Panel

1
2

3

4

Figure 4: The three linked views present complementary perspectives on a software system.
In this case the analyzed system is ArgoUML

The Architectural View is Softwarenaut’s graph-based representation of mod-
ules and their relationships. The nodes in the graph represent modules
and the edges represent the relationships between the modules, rela-
tionships extracted from the static analysis of the system. Each edge
in the graph is an aggregation of low-level relationships between the
two associated modules.

The tool enables the visualization of a graph with various degrees of
visual detail. Figure 5 shows three levels of visual detail2: (a) the
leftmost diagram presents a dependency graph as simple nodes and
edges; (b) the middle presents a polymetric view [16] in which the width
of a dependency is proportional to the number of abstracted explicit

2The tool also implements other levels of visual detail. Section 6.3 presents the way
one can extend the tool with new representations for modules.

7

relationships, and the size of a module is proportional to its size; (c)
the rightmost diagram presents a modified treemap layout which shows
all the contained submodules and classes inside a module.

Figure 5: The tool visualizes a graph with different degrees of sophistication. Left: simple
nodes and edges; Middle: polymetric view; Right: a modified treemap view

The Inspector panel presents details for an entity selected in the Exploration
panel. The goal is to supplement details of the element selected in the
exploration panel.

The Overview hierarchy presents the entire hierarchy of a system and high-
lights the modules that are visible in the exploration panel. It presents
a vertical slice through a system [17], offering an orientation aid which
is critical for successful navigation [18]. In Figure 4 the package tree
of ArgoUML is present and on it the packages that are present in the
view are highlighted in green. The subtree of the currently selected
element (e.g.,uml) is highlighted in gray.

In the context of Softwarenaut we consider architecture as “the fundamen-
tal organization of a system embodied in its components, their relationships
to each other” [19]. The software engineering community agrees that the
architecture of a complex system must be expressed through various archi-
tectural viewpoints. Softwarenaut can be used for recovering views of the
physical architecture of the system.

The tool assumes that the hierarchical organization of the system that is
provided as input to the tool contains the architectural components of the
system or at good approximations of these components. By the interactive

8

exploration of the input hierarchy various perspectives on the architecture
can be extracted; we call these perspectives architectural views. This section
continues by detailing the interactive techniques that support the exploration
process in Softwarenaut: navigation (Section 3.1), rule-based filtering (Sec-
tion 3.2), highlighting (Section 3.3), and details on demand (Section 3.4),

3.1. Navigation

The dominant exploration mechanism of Softwarenaut is navigation along
the vertical decomposition of the system. One starts with a very high-level
abstracted view of a system and continuously refines it by using exploration
operations [20]. At any given moment the set of visible nodes in the explo-
ration view with which the user interacts constitutes the working set (WS).
Initially the working set contains very few high-level nodes. As the user ex-
plores the system he transforms the working set by performing exploration
operations on it and thus changes the contents of the view in the exploration
view.

A B

A1

B

A2

A1 B1

A2 B2

A

A1 A2

CA2CA1

B

B1 B2

expand A expand B

collapse
A1 and A2

collapse
B1 and B2

H
ig

h-
le

ve
l

R
el

at
io

ns
hi

ps
C

on
ta

in
m

en
t

R
el

at
io

ns
hi

ps

Working Set = {A,B} Working Set = {A1,A2,B} Working Set = {A1,A2,B1,B2}

CB11 CB12 CB2

A

A1 A2

CA2CA1

B

B1 B2

CB11 CB12 CB2

A

A1 A2

CA2CA1

B

B1 B2

CB11 CB12 CB2

mX mY mZ mT mX mY mZ mT mX mY mZ mT

Figure 6: The expand and collapse complementary operations that enable vertical navi-
gation in the hierarchical graph

The exploration operations supported by Softwarenaut are:

9

Expand. The expand operation applied to a node of the hierarchical graph
in the working set replaces the node in the working set with nodes that
represent its children.

Collapse. The collapse operation applied to a module in a working set
removes the module and all its siblings from the view and replaces
them with their parent module.

Remove. The remove operation applied to a node removes that node from
the working set.

Group. The group operation applied to several modules in a working set
removes the modules from the set and adds instead a unique new node
representing the entire group.

Focus On. Applied to a node, this operation removes all the nodes and
relationships that are not related to a given node from the view and
reorganizes the rest of the elements in the view around the node that
is under focus.

Zoom In. This operation removes all the other nodes from the view and
zooms in into the subject node. It is different than the Expand ans is
useful when expanding the node would bring too much detail into the
view. It is in fact equivalent with a Filter of all the unrelated nodes
and then an Expand.

As the user refines the view, and moves down the vertical hierarchy of
the system, he brings more and more elements into the view. He can use
the Filter and Group operations on explicit sets of nodes to decrease the
number of nodes displayed on screen and therefore cope with the complexity
of large graphs. One type of module that benefits the user when filtered out
is omnipresent modules which contribute little to the understanding of the
architecture of the system, and heavily clutter the view [21].

History Operations. An important requirement for information exploration
tools is keeping track of the interaction and providing undo/redo operations
[13]. Very few architecture recovery tools implement this feature. We have
discovered this requirement while testing an earlier version of the tool with
users (see Section 7.2 for more). In its latest version Softwarenaut implements
undo/redo operations.

10

3.2. Filtering

In the previous section we have introduced the Remove operation which
works on explicit sets of nodes. Most software architecture recovery tools offer
such a filtering operation [22]. Softwarenaut implements two main categories
of advanced rule-based filters for nodes and edges.

1. Low-level filters act on the hierarchical graph itself. They remove from
the hierarchical graph the elements that match a given condition, e.g.,
all the invocation relationships that go to polymorphic classes.

2. High-level filters act on the high-level elements and relationships be-
tween them in the working set, e.g., hiding all the high-level dependen-
cies that abstract only a few low-level dependencies.

During exploration, the user needs mostly the high-level filters. There
are three types of filters that apply to both artifacts and relationships:

Metric-based filters for entities and relationships are defined with respect to
the metrics computed for artifacts. For example filtering out the weak
dependencies or the small modules3 in a view. The graph presented in
Figure 4 contains only relationships that abstract more than 50 low-
level dependencies.

Type-based filters for entities and relationships are defined with respect to
the type of the artifacts. For example showing only inheritance rela-
tionships or hiding all the classes from a view. The graph presented
in Figure 4 presents only invocation relationships and filters out any
other type of relationship.

Evolutionary filters are defined based on the historical evolution of a module
or an inter-module relationship in the system4. For example showing
only the relationships that existed in all the versions of a system, hiding
all the unstable relationships [23], or displaying only the modules that
were introduced in the last version of the system.

3These are threshold-based high-pass filters
4Evolution-based filters require models of multiple versions of a system loaded. We

talk more about them in Section 4

11

2

1

3

Figure 7: The UI for applying relationship filters in Softwarenaut

Softwarenaut also implements filters that work only for relationships. One
such example is Directional filters which are defined based on the direction
of the relationship between two modules. For example, filtering out the
unidirectional relationships from a view is useful for highlighting the modules
that have mutual dependencies; these might be candidates for refactoring as
mutual dependencies prevent an organization of the system based on layers.

The border in Figure 7 highlights the relation filtering panel in Software-
naut in which one can select and combine filters that apply on relationships.
The user can also define new filters by writing simple scripts in Smalltalk.
Once a new filter is defined, it is immediately available for use. Several filters
can be combined to obtain more expressive ones. The elements that match
the filter can be either “shown” or “hidden”.

12

In the figure the current active filter is [Strength] Average which dis-
plays in the architectural view only the high-level relationships which have a
strength greater than a given threshold. This is useful since after expanding
the uml module in Figure 4 the number of nodes in the view tripled and the
number of relationships grew even more. The filter allows focusing on the
important relationships first.

3.3. Highlighting

Highlighting is a query, like filtering, which does not remove the elements
from the view. One can highlight based on pattern matching in the names
of the entities (e.g., all the classes that nave “Test” in their name) or based
on structural properties of the code (e.g., all the classes that define the Main
method).

When the modules are represented with a modified treemap view the user
can see all the classes in the system at once and map various metrics on the
color of the classes. In Figure 7 the color intensity of a class is proportional to
the FANOUT of that class. With such a view one can discover the hot spots of
the system. In the ArgoUML case study the figure shows two classes which
stand out: the ProjectBrowser (labeled 2) and the UmlDiagramRenderer
(labeled 3); the first is the main window of the application and the second is
a Factory for figures representing UML elements.

3.4. Details-on-Demand

The elements of every architectural view in Softwarenaut are nodes rep-
resenting modules and edges representing relationships between them. To
understand such a view the user needs to understand the role of the nodes
and the meaning and reason for the existence of the edges. Metaphorically, if
the view was a phrase, the nodes would be the nouns and the edges would be
the verbs. One can understand the message only when one has understood
all the nouns and the verbs.

The Inspector panel enables the analysis of individual elements in an
architectural view. When one artifact is selected in the architectural view
the available inspectors are loaded as tabs in the Inspector panel. There are
different inspectors for modules and relationships.

3.4.1. Inspectors for Modules

The modules presented in the architectural view are abstractions of large
number of elements. The inspectors for modules have the responsibility of

13

shedding light on the role of a module in a system. There are two types of
module inspectors:

• Inspectors that detail the internals of a module. They summarize the
contents of a module or present them in a more detailed form than is
possible in the architectural view. The Class Metrics inspector shows
metrics for all the classes contained in a module and its submodules.

The left part of Figure 8 presents the Class Metrics inspector for the
cognitive module5. The module abstracts 73 classes and for each the
view displays the number of methods (NOM). Some of the largest
classes in the module are: ToDoList, Designer, ToDoItem. The names
of the classes reveal the functionality of the module: providing cognitive
support for task management.

• Inspectors that detail the interaction of a module with the rest of the sys-
tem. Such inspectors summarize the relationships of a module. They
are required since the architectural views only present individual re-
lationships between pairs of modules and although these individual
relationships can be inspected there is no way of analyzing all of them
at once. The Module Interface inspector presents a dependency ma-
trix between the classes from the module (rows in the matrix) and the
other modules in the architectural view (columns in the matrix). The
cells in the matrix have the color shade proportional to the number of
dependencies.

The right part of Figure 8 presents the Module Interface for cognitive.
The first observation is that some of the classes are widely used by the
other modules (e.g., the Designer and ToDoItem) while others are only
used by one of the modules (e.g.,Critic). The second is that only 28 of
all the 73 classes are used by the other modules in the system; of these
28 about half are used rarely as the white coloring of the matrix cells
show.

3.4.2. Inspectors for Relationships

The relationships presented in the architectural view represent collections
of low-level relationships. The relationship inspectors provide support for un-
derstanding them. They are important since understanding the relationships

5The module is labeled (1) in Figure 4

14

Figure 8: Two Inspectors: The Class Metrics (left) and the Module Interface (right)
present two complementary aspects of the cognitive module from ArgoUML

is critical for understanding an architectural view. Softwarenaut provides a
broad and extensible set of inspectors for relationships [24, 23] and to our
knowledge is the only architecture recovery tool to provide such a feature.

The two main roles of relationship inspectors are:

Detailing the structure of a given relationship. The architectural relation-
ships hide many low-level relationships between classes in the two in-
volved modules. The user might be interested to start browsing the
entities involved in the relationship either from the client module or
from the provider module. To support this two complementary views
are available: the Invoked Artefacts and the Invoking Artefacts inspec-
tors present the artifacts respectively in the target and source modules.

Figure 9 presents the Invoking and Invoked Artefacts inspectors for the

15

dependency between uml to ui (labeled (2) in Figure 4). The left panel
contains more than 200 classes that depend on the 37 classes in the right
panel. The class that has the largest number of incoming invocations
is expanded to show the distribution of these invocations across its
methods: the most called method is getInstance. In ArgoUML the
TargetManager is a Singleton that represents the element currently
selected by the user; therefore a wide range of actions need to act on
it.

Figure 9: The Invoking and Invoked Artifacts (left and respectively right) inspectors
provide details on the dependency from uml to ui in ArgoUML

Providing information about the evolutionary dynamics of a relationship.
The Relationship Evolution Filmstrip inspector presents the evolution

16

of the given relationship in all the versions of the system that are avail-
able for analysis. Figure 11 presents such a view: the two modules and
the associated relationship are represented in every analyzed version
with metrics providing information about the dynamics of the relation-
ship. Section 4 presents more details about the Evolution Filmstrip
while discussing evolutionary aspects of the tool.

4. Evolutionary Analysis

Softwarenaut can take evolutionary information into account to provide
advanced inspectors, history-enabled filters, and highlighters.

To support multi-version analysis Softwarenaut requires that models of
multiple versions of the system under analysis be available. Figure 10 shows
how a system history in Softwarenaut is composed of a list of hierarchical
graphs, one for each analyzed version. This approach is conceptually the
same as that of Gı̂rba [25]. One limitation of such an approach is that the
memory requirements are linear to the number of versions and both importing
and keeping multiple such models in memory can be inefficient. As a result
one needs a strategy for selecting the versions that compose the history.

Hierarchical
Graph 1

Hierarchical
Graph 2

Hierarchical
Graph i

Hierarchical
Graph n

Name-based
Entity

Matching

Version 1 Version 2 Version i Version n

System
History

Figure 10: In multi-version analysis each version considered has a corresponding hierar-
chical graph

To monitor the evolution of the individual elements through multiple
versions one needs to link the corresponding elements in the different versions.
In the literature this is known as the problem of entity identity: having two
entities at two different moments of time, how do we know whether they

17

are two versions of the same entity. This problem can also be found in the
literature under the name of origin analysis [26]. The most common way
to recover the identity is by the name of the entity, that is, if we have two
entities with the same name and the same type in two versions, then they
are considered to be two versions of the same history. One limitation of this
approach is that it fails to recognize rename refactorings.

In the following section we show examples of inspectors and filters that
take advantage of the available multi-version analysis.

4.1. Evolutionary Inspectors for Relationships

One of the applications of multi-version analysis is the Relationship Evolu-
tion Filmstrip [23]. The Filmstrip is an inspector which presents the evolution
of a given relationship between two modules over the time.

Figure 11: The Relationship Evolution Filmstrip presents the evolution of a given rela-
tionship through the multiple versions of the system available for analysis.

Figure 11 presents the evolution filmstrip for the relationship between uml
and kernel (labeled (3) in Figure 4). In the film strip, the arrows between
the modules represent implicit dependencies of different types (the invoca-
tion dependencies are represented in black and the inheritance dependencies

18

are represented in red). The width of the dependency arrows is proportional
to the number of low-level dependencies abstracted in the corresponding im-
plicit dependency [23]. The representation of the width of the dependencies
provides insight into the quantitative dynamics of the inter-module relation-
ship.

In Figure 11 we see that in the initial version the dependency was unidi-
rectional from uml to kernel. Later a reverse dependency is introduced from
the Project and ProjectManager classes which accesses a few functionalities
in the uml package.

4.2. Evolutionary Inspectors for Modules

The Module Evolution Filmstrip presents the evolution of a given module
when multiple versions of the system are loaded.

Figure 12 presents an example. The versions of the module are pre-
sented chronologically from top to bottom. Each version is represented with
a treemap layout in which the classes are visible inside the module and each
class is proportional to its size measured in lines of code. In each version evo-
lutionary deltas related to the previous version are highlighted: the classes
that are new in that version of the module with respect to the previous one
are highlighted with yellow; the classes that are modified with blue and the
intensity of the color is proportional to the amount of changes – the more a
class has changed with respect to its previous version, the darker its shade
of blue.

In Figure 12 one can see that in the version of ArgoUML from 2003 (the
top version) there are only two classes that form the persistence module6 and
they disappear by the version in 2005 (the second version from the top), as it
is implied by the fact that all the classes in the next version are coloured in
yellow. By inspecting the names of the classes in the first version (DBReader
and DBWriter) we conclude that they are responsible for interfacing with the
database. By inspecting the names of the classes that are in the next version
(e.g.,XMIParser or XMLInputStream) we conclude that the new classes are
responsible for file serialization.

4.3. Evolutionary Filters

Filters for relationships and modules are a powerful mechanism for coping
with the large graphs that some systems entail. They display only those

6The persistence module is labeled (4) in Figure 4

19

Figure 12: The evolution of the persistence module in ArgoUML shows that the system
migrated from a database serialization policy to a file-based one between 2003 and 2005

elements in an architectural view that are important for a given task and thus
focus the analysis. Evolutionary filters for both relationships and entities can
be classified in two main categories:

Age-based filters take into account the number of versions in which the
relationships or modules existed in the system. Lifetime relationships
have existed in all the versions of the system, Newborn relationship have
appeared only in the last analyzed version [23], Historical modules have
existed since the first analyzed versions of the system.

Dynamics-based filters take into account the dynamics of the relationships
and modules across versions. Stable relationships do not change much
during the evolution of the system, Unstable relationships change fre-
quently during the history of the system.

20

Figure 13: The left part of the figure shows all the relationships while the right part
presents only the lifetime relationships between the ArgoUML modules from Figure 4

Evolutionary filters assume that not all the entities are equally relevant
for the task at hand. Different types of evolutionary filters support different
goals of analysis. Two such goals, and their corresponding filters are:

1. Architecture Recovery. When recovering the architecture of a system
one needs to discover first the main components of the system. A filter
like lifetime relationships is relevant since the relationships that existed
in the system since the first versions are more likely to be part of the
architectural backbone of the system.

2. Quality Assessment. When assessing the maintainability of an architec-
ture the goal is to find the problems, the irregularities. In this context
filters like newborn relationships are of use since they focus on new re-
lationships that were were not validated by time which might be the
result of changes performed by new developers who are unaware of the
architecture of the system.

Figure 13 presents two views on the same modules that are also present in
Figure 4 first without any relationship filters and second with age-based filters
activated. The left side contains 47 relationships. The right side contains

21

only the lifetime relationships: 22 relationships that existed between the
displayed modules in all the versions of the system.

The usefulness of the filters is hinted by the fact that in the second view
the number of relationships is low compared with the total number of rela-
tionships that are present in the last version of the system; thus age-based
filters can function as mechanisms for reducing the information overload. A
more in-depth study on the power of age-based filters as information reducers
is found elsewhere [23].

5. Collaboration Through First-Class Views

Traditionally software analysis tools were designed with a analysis-in-
one-sitting attitude in mind. One was supposed to start the analysis, arrive
at some results, and then discard all the data such that if he had to start
again, he would start from scratch. In Softwarenaut we want to enable the
interruption and continuation of the analysis, and the reuse of the results of
the analysis between sessions. Moreover, traditional software analysis never
reuses the information that one user has gained about a certain version of
the system when another user analyzes the same system. This is unfortunate
since once published a version of a system never changes and therefore the
results of one analysis can contribute to further analyses. In Softwarenaut
these two problems are addressed with the help of first-class views and the
concept of a Global View Repository, a service for sharing recovered archi-
tectural views.

5.1. First-Class Views

The designers of a system use multiple diagrams for the specification of
the architecture of a system. In the same way, during architecture recovery
they need to recover multiple views to capture various aspects of the structure
of the system.

Views are first-class entities in Softwarenaut: one can save and restore
any view during the exploration. During an exploration session, each time
the analyst encounters a view that presents a relevant perspective on the
system he can save it for later reference or for sharing with others. The
result of a Softwarenaut analysis session is therefore a set of architectural
views.

The view persistence mechanism can be used also as a way of conquering
the complexity of top-down exploration. When the architectural view under

22

analysis becomes too complex, the user can save it and then explore differ-
ent sub-parts of it. This is addressed partially in other tools by the use of
semantic zooming techniques [12].

In Softwarenaut a view is defined by the following information:

• a name and description,

• the name and version of the system under analysis

• the current working set with the positions of all the nodes in it,

• the active artifact and relationship filters (both explicit and rule based),

• the name of the creator of the view

The model of the system is not saved together with the view. We assume
that model construction is deterministic and the name and version of the
system will suffice for model reconstruction at a later time 7.

5.2. Sharing and Discovering Architectural Views

Once published, a given version of a system never changes. Therefore
all the analysis results regarding that version should be made public so that
other users can discover previous results and corroborate their findings. In
the context of architectural view recovery this means discovering architec-
tural views that others have previously recovered.

To support sharing and discovering architectural views we have created
the Global Architectural View Repository (GVR) – a public repository that
indexes architectural views. Figure 14 presents the concept behind the GVR
through a simplified example. While analyzing system Z, users A and B
publish views v1 and v28. When later user M analyzes the same system, he
can already benefit from the previous knowledge by discovering the views
that users A and B have published.

In the future, the architectural views as saved in the GVR can serve as
the basis for monitoring the architectural evolution of the system. After the
publication of a new version of the system, Softwarenaut would automatically

7This requires nevertheless a way of uniquely identifying the entities in the view. In
our case, for each of the entities in the working set we save the fully scoped name

8The publish(v1, Z) notation means publishing to the GVR the view v1 for system Z

23

Global View
Repository

(GVR)publish(v2, Z)

publish(v1, Z)
User A

analyzing
System Z

User B
analyzing
System Z

User M
analyzing
System Z

retrive(Z)

v1,v2

Figure 14: Architectural Views are stored in the Global View Repository. This enables
collaboration through knowledge sharing and discovery

detect the views affected by the new changes, and present a visual diff which
would make explicit the differences between the state of the system at the
moment when the view was created and the latest system version.

Figure 15 presents the UI which is responsible with the interaction with
the architectural views in Sofwarenaut:

• The top part of the inset presents the locally stored views which the
user has in the image. For each of them the user can load it, delete it,
or push it to the GVR. The operations are visible in the pop-up menu.

• The bottom part presents the views which exist for the given system
in the GVR. From the global view repository he can pull views in the
local repository, or if he is the creator of such a view he can delete it
from the global repository too.

6. The Architecture of Softwarenaut

6.1. Fact Extraction and Modelling

At the lowest level, Softwarenaut models a system using the Core of
FAMIX, a language independent meta-model for object oriented systems [27].

24

Figure 15: Views are first-class entities in Softwarenaut. They can be saved, deleted
locally, but also published and retrieved from the Global Architectural View Repository.

The tool relies on third-party fact extractors (such as McC [28] or inFusion9)
that analyze the source code and build the intermediary model.

FAMIX represents both artifacts and relationships as first-class entities.
The main artifacts are namespaces, packages, classes, attributes, methods,
fields. The main relationships between these entities are method invocations,
variable accesses, class inheritances, and package include relationships [27].

A class of relationships that have a special importance in Softwarenaut are
the containment relationships which organize a software system into a vertical
hierarchy: classes contain methods, modules contain classes, systems contain
modules. This containment mechanism is a conventional way of coping with
the complexity of large software systems.

At an architectural level, different languages provide different mechanisms
for the hierarchical organization of the system. C/C++ developers use the
directory structure to organize systems hierarchically; Java developers use the
package hierarchy; Smalltalk developers use the bundles hierarchy, etc. When

9See http://www.intooitus.com/inFusion, verified Jan 25 2011.

25

http://www.intooitus.com/inFusion

a hierarchical decomposition is not provided, we can automatically generate
one using clustering techniques [29]. We presented elsewhere an experiment
in clustering the classes in a system based on language similarity[30].

6.2. Integration with the Moose Analysis Platform

Softwarenaut is integrated in the Moose Analysis Platform [31]. Software-
naut reuses several of the views defined in Moose for its inspectors (e.g., the
inspectors that show entity metrics). Also, since behind any visual element
of Softwarenaut lays a TreeNode object which wraps often a FAMIX entity
(e.g., FAMIXPackage or FAMIXClass) the user can spawn other Moose anal-
yses by selecting any of the elements of a Softwarenaut architectural view.
At the same time, any tool in the Moose platform can spawn a Software-
naut architectural analysis on any group of entities which have containment
relationships and dependencies between themselves.

6.3. Mechanisms for Tool Extension

Many of the features of the tool are discovered at run-time through re-
flection so that that all one needs is to know the extension points. Here we
give examples of several of the features that are loaded reflectively together
with the rules by which they are discovered.

Inspectors for Modules and Dependencies. In order to provide a new inspec-
tor for a module or a relationship one needs to implement a subclass
of Inspector which implements three messages: canDisplay: anObject,
tabName and display: anObject. The first message tests whether the
inspector can display a certain object, the second gives the name of
the view, and the third actually displays the object. Figure 16 shows
the implementation of the first two methods in the Relationship Film-
strip10.

Filters for Modules and Dependencies. In order to provide a new filter one
needs to add a new method in the corresponding filter class (NodeFilter
or DependencyFilter) and annotate it with the filter annotation. Figure
17 shows the code for the definition of the newborn relationships – these
are relationships that have a history of size one (line 5) and their last
version is not empty (line 6). Line 1 shows the annotation.

10The examples are in Smalltalk

26

RelationshipFilmstrip>>canDisplay: anObject
1: ^(anObject isKindOf: SN.DependencyCollection)
2: and: [anObject history notNil]

RelationshipFilmstrip>>tabName
3: ^'Relationship Evolution Filmstrip'

Figure 16: Two methods enable the runtime discovery of inspectors

DependencyFilter>>isNewborn
1: <filter: 'Newborn'>
2: ^ShallowDependencyFilter
3: name: 'Newborn'
4: block: [:dep|
5: (dep nonEmptyVersions size = 1)
6: and: [self versions last notEmpty]]

Figure 17: Annotating methods in the Filter classes enables run-time discovery

Module Representations. In order to provide a new method for represent-
ing a module one needs to subclass the ModuleFigureBuilder class and
implement the moduleFigureFor:withBounds: message in his new class.
The method receives the object it is supposed to draw together with the
rectangle in which it has to fit the visual representation of the object.

6.4. Softwarenaut Synergies

One of the tools that benefits from the Global View Repository is the
Small Project Observatory (SPO), an ecosystem analysis tool that we have
introduced elsewhere [32]. SPO works at an abstraction level above the
architectural level of individual systems: the ecosystem abstraction level [33].

SPO needs to support navigation between the two abstraction levels to
support the understanding of the ecosystem abstraction level. When navi-
gating from the ecosystem abstraction level down to the architectural level
SPO must present architectural views of the individual systems. When they
are available, the architectural views of the individual systems are obtained
from the Global View Repository. SPO can therefore reuse architectural
information generated with Softwarenaut.

In a collaboration with the researchers at UC Irvine we have integrated
the tool with the Sourcerer database [34]. Softwarenaut has now a broad

27

Figure 18: SPO imports architectural views saved in Softwarenaut

range of available case-studies while the database can benefit from the anal-
ysis services of Softwarenaut. The integration with the SourcererDB was
eased by the service based architecture of Sourcerer and intermediated by
the FAMIX meta-model.

7. Tool-Building Considerations

In this section we discuss several aspects related to tool-building in re-
search. We touch usability, the integration in the broader research ecosystem,
and using the tool as a testbed for research.

7.1. The Tool as a Vehicle for Research

Softwarenaut served as the prototype for many of the research ideas we
had during the PhD of the first author. We have integrated the tool with
others [35, 36, 31] and we provided a framework in which master projects can
be developed [37]. The tool was the basis for a number of research papers:

• Package Patterns for Architecture Recovery [38]: This article provides
a classification of software packages based on their interaction with the
rest of the system. We used Softwarenaut to explore multiple systems
and discover these patterns.

28

• Exploring Inter-Module Relationships in Software Systems [23]: This
article presents a taxonomy of inter-module dependencies in software
systems based on their evolution patterns.

• Interactive Exploration of Semantic Clusters [35]: This article proposes
a technique for visualizing dendrograms of software systems using an
exploration approach. In order to be able to visualize dendrograms
resulting from hierarchical clustering we had to adapt our model.

• Cutting Edge Visualization in Software [24]: This short article argues
for the importance of providing detail views that enable one to under-
stand dependencies in software.

• Automatic remodularization. One of the extensions built on top of
Softwarenaut is MARS, an automated architecture refactoring recom-
mender tool [37]. It starts from a given Softwarenaut view and checks
whether move operations applied on classes can improve the architec-
ture of the system by increasing coupling and decreasing cohesion.

7.2. Studying the Usability of the Tool

We have often used Softwarenaut to analyze Softwarenaut itself, and this
has determined several re-architecting sessions as well as UI improvements.
We also used the tool in the practical part of the Software Evolution master
course at the University of Lugano to test its usability and usefulness.

In the second year of using the tool in the Software Evolution course we
decided to have an exploratory study to evaluate the usability and usefulness
of the tool. We asked the students to analyze a large software system they
have never seen before with the help of Softwarenaut and to produce an
architectural report. Our main goal in organizing the experiment was to
get feedback on the usability of the tool; our secondary goal was to collect
anecdotal evidence on its usefulness for architecture recovery.

Eight users, one PhD and seven master students participated in the ex-
periment. We presented the tool during one hour. Then the users had two
hours to perform the tasks presented in Table 1. The case study was Ar-
goUML. They worked in teams of two, and provided us with a report of their
findings. After finalizing the report, they answered a questionnaire on the
usability of the tool.

By analyzing their reports we observed several things:

29

• In several of the tasks (1–3) each of the teams provided a slightly dif-
ferent perspective on the system. The differences were in the layouts
they used, in the filtering they applied. Each one captured a certain
aspect of the system. Unfortunately at the time there was no way for
them to share the views with each other and discuss them.

• Some of the tasks were not solved by all the teams (4–5,8). One reason
was the insufficient training with the tool, another reason were the
usability limitations of the tool at the time of the experiment.

• For one of the tasks (8) the tool was not sufficient and they had to rely
on the online documentation of the analyzed system.

• For the questions regarding dependencies (4,8) all the users preferred
the tool to reading the code or online documentation.

The first part of the usability questionnaire contained several assertions.
The users had to mark the strength of their agreement with each assertion
on a scale from 1 to 5. Table 2 presents the assertions together with the
average agreement level. Although not statistically relevant the results show
that the tool was easy to use, the participants felt confident that the results
they provided were reliable.There was less agreement on whether the user
interface was intuitive and whether ArgoUML was an appropriate case study.

Task

1 Discover one or more architectural views on the system which present modules and their
interactions

2 Is there a subset of the modules that you consider to be at the core of the system?

3 Is there a core module in the system? Why? How does it interact with the others?

4 Choose one inter-module dependency in the system and analyze it. What is the reason
for its existence?

5 Choose one other module in the system. Analyze its interface.

6 Are there cases in which two modules depend on one another that you would have not
expected from the conceptual architecture?

7 Overall what do you think about the structure of the system? Is it well modularized?

8 You want to add support for generating code in a new language. Which module do you
change? Which others are impacted? How much time do you need?

Table 1: The eight tasks the participants had to solve in two hours.

30

We believe that these two last answers were due to the limited time they had
at disposition.

Assertion Agreement Level (average)

The tool was simple to use 4

The user interface was intuitive 3.25

The results generated were reliable 4.5

Was ArgoUML a good choice for a case study? 3

Table 2: Answers to the questions regarding the tool usability

The second part of the usability questionnaire consisted of open questions.
We first asked the participants what were the capabilities of the tool that
they found the most useful during their analysis. Two of the teams answered
with ”all the features we have used” and ”many features, you can do a lot”.
Table 3 shows that the others were content with the dependency analysis
and the exploration operations.

Feature Supporters

Showing dependencies between modules (2 teams)

The exploration operations (2 teams)

Filters (1 team)

Inspectors (1 team)

Table 3: The features that the users considered the most useful

We finally asked what were the features that they thought were missing
from the tool. Table 4 shows that the most desired features were smart filters,
arbitrary groupings and history operations.

We had used these results to inform our work on future versions of the
tool. Many of these features are included in the tool and have been presented
in this article while some are still on the backburner. 11

11One usability problem which, although not on the list of our participants, we are aware
of is the fact that when too many nodes are expanded the view becomes to busy to be
useful. We have observed that effect depends heavily on the structure of the system that
is being analyzed.

31

Feature Requesters

User defined filters (all incoming dependencies, all outgoing dependen-
cies, dependencies weaker than...)

(3 teams)

Arbitrary grouping of items (selected items, classes whose name matches
a certain pattern, orphan classes)

(3 teams)

Undo and Redo operations (2 teams)

Selecting edges (multiple edges, all outgoing edges) (2 teams)

View persistence (1 teams)

Table 4: The features that the users considered were missing

This has been an early exploratory study with few participants and we
cannot claim that the results generalize. In the future we plan to organize
a controlled experiment to evaluate both the usefulness of the tool for the
purpose of architecture recovery as well as its usability.

7.3. Depending on Other Research Prototypes

Depending on other research prototypes and platforms has been a benefit
because we had the opportunity of using cutting edge technology and building
on the shoulders of giants. In the same time it made our life harder since the
tools that we depended on kept moving “under our feet” and at times they
were not maintained anymore.

For example during the development of the tool the Moose framework was
ported from VisualWorks Smalltalk to Pharo Smalltalk for license reasons.
Together with this the FAMIX 2.1 meta-model was replaced with the 3.0
version. This introduces a small compatibility issue between the tools that
work in Pharo and VisualWorks. Since until now we did not have the engi-
neering effort required to port all our code to Pharo we remained dependent
on the VisualWorks Moose version.

A totally different problem is when one depends on a web service. There
one cannot shield oneself from the changes on the other side. Recently the
SourcererDB went through a database upgrade: for some time the Software-
naut users did not have access to the large pool of case studies.

This might not be a unique experience, but it is a reminder that when
building research prototypes that relies on other research prototypes one
needs either to shield oneself from changes upstream or to be ready to con-
stantly adapt to the changes. We believe that the best strategy is a combi-

32

nation of both and that the benefits of being part of a research ecosystem
outweigh the difficulties.

7.4. Availability and Documentation

Softwarenaut is written in Smalltalk and is released under the open source
MIT License. The tool runs on Windows, Linux, and OS X and is available
online at http://scg.unibe.ch/softwarenaut/. The homepage of the tool pro-
vides screencasts, documentation, installation instructions, and directions on
how to obtain the source code and to contribute.

The Global Architectural View Repository (GVR) is implemented as a
PostgreSQL database which can be publicly accessed by instances of Soft-
warenaut or other tools. The online documentation provides more informa-
tions about ways of accessing the GVR.

8. Related Work

There is an extended tradition of architecture recovery tools in software
engineering research. Pollet et al. have presented a comprehensive overview
of the work in architecture recovery in their survey article [3]. In this section
we take several of the core aspects of Softwarenaut and we discuss how they
are similar and how they differ from other state of the art tools.

8.1. Exploration and Navigation

The first architectural visualization tool was Rigi, which emphasizes visu-
alization and interaction [39]. Rigi visualizes the data as hierarchical typed
graphs and provides a Tcl interpreter for manipulating the graph data. The
reconstruction process is based on a bottom-up process of grouping software
elements into clusters by manually selecting the nodes and collapsing them.
The approach does not scale well when analyzing very large systems . In
Softwarenaut we automatically aggregate low-level relations and let the user
navigate down from the highest abstraction level.

The SHriMP tool [12] and its Eclipse-based continuation Creole [40] dis-
play architectural diagrams using nested graphs. Their user interface embeds
source code inside the graph nodes and integrates a hypertext metaphor
for following low-level dependencies with animated panning, zooming, and
fisheye-view actions for viewing high-level structures. Relo [41] provides an
exploration approach in which a users starts with a given artifact and explores
further on an as-needed basis. One difference between SHriMP, Creole, Relo
and Softwarenaut is that the latter can also perform evolutionary analysis.

33

http://scg.unibe.ch/softwarenaut/

8.2. Evolutionary Analysis

YARN [42] animates the evolution of dependencies between the modules
of a system. We represent evolution by building complete models of several
system versions (just like CodeCity) while YARN uses an evolutionary model
and analyze the information in each commit. The disadvantages of YARN is
that watching an animation can be time-consuming and it does not support
interactive exploration operations such as filtering.

CodeCity of Wettel [43] visualizes software systems using a city metaphor
and also provides visualizations of the evolution of the systems. The main
advantage of our approach over Wettel’s is the fact that we present relation-
ships while he does not.

Pinzger proposed the ArchView approach [44] which provides visualiza-
tions that present the evolution of the modules in a system. His evolution
analysis takes into account the annotations from the versioning system repos-
itory. However, there is no support for first-class views in ArchView and the
dependencies between the modules are only based on logical coupling.

One of our original contributions is the possibility of filtering information
in the view based on its historical properties. One related study is the one
of Wierda et al. who recover the architectural decomposition of a system
through clustering; they observe that if they use for clustering only those
dependencies that were in the system in both the first and the last versions,
the decompositions are more precise [45]. This observation supports our idea
of considering the lifetime relationships as more relevant for the architecture
than the newer relationships.

8.3. Collaboration

Shrimp, the tool of Storey et al., also allows for saving and restoring
views [46]. The views are saved inside a “Filmstrip” which is persistent.
Through the intermediation of the filmstrips the users can restore exploration
sessions or even share certain views. This type of information enables people
that know about each other to share information by emailing the files. The
advantage of the Global View Repository is that it allows information that
other users have discovered to be shared.

Churrasco [47] supports software visualization and analysis and through
a web interface. This allows different users to annotate the diagrams and
thus allows a dialogue to be formed around the online visualizations. Chur-
rasco presents high-level visualizations but it does not provide dependency
information which we consider critical for architectural understanding.

34

Proposed by Hattori et al., Replay [48] enables the chronological replay
of changes inside the Eclipse IDE and supports awareness of team member
activity by allowing one to selectively replay the changes of other team mem-
bers. The information in Replay is more fine-grained than ours and is never
aggregated to the abstraction level of the architecture.

One project developed with collaboration support as the main goal is the
Jazz IDE of IBM [49]. Jazz aims at supporting collaboration and awareness
in small informal software development teams during forward engineering.
Softwarenaut aims to support collaboration between engineers during pro-
gram understanding although recovered architectural views can be used to
support awareness during forward engineering.

9. Conclusions and Future Work

We presented Softwarenaut, our tool for architecture recovery. Soft-
warenaut enables the recovery of architectural views from a software sys-
tem through interactive exploration of a hierarchical decomposition of the
system. It supports the “overview first, zoom and filter, and details on de-
mand” principle of information visualization and it provides features that are
required from architecture recovery tools: rule-based filtering mechanisms,
history operations, interactive exploration, and detailed views for modules
and relationships.

Two of the original features of the tool are the capacity of saving and
sharing architectural views in a Global Architectural View Repository and
the capacity of analyzing multiple versions of a system in order to provide
better filtering and interaction capabilities. We have illustrated the features
of the tool and the architecture recovery approach that it supports using as
a case-study ArgoUML, a successful open source Java system.

The tool, released under an open-source MIT license, was the test-bed
for a variety of research projects, and is still serving us in our research and
consulting practice.

One of our main future research directions is exploring ways in which
the recovered views can be integrated in the forward engineering process and
function as a live documentation of an evolving system. The Softwarenaut
views are not simple pictures but instead they encode relationships between
the artifacts in the system. A view recovered for a given version of the
system can function as a reference point for presenting the future evolution of
the system. Another direction would be overlaying architectural constraints

35

on top of the existing views and then enforcing them during the system’s
evolution. Finally we plan to run controlled experiments and user studies to
evaluate usefulness and usability.

Acknowledgements. We would like to thank Fabrizio Perin for feedback on
earlier drafts of this paper. We would like to thank the anonymous review-
ers for their qualitative feedback. We would also like to acknowledge Joel
Ossher and Crista Lopes from UC Irvine for the collaboration in integrat-
ing Softwarenaut with the Sourcerer database. We would also like to thank
the anonymous reviewers for their constructive feedback and patience while
reading the first version of this article and trying out Softwarenaut. Lanza
acknowledges the financial support of the SNF through project SOSYA (SNF
Project No. 132175).

References

[1] M. Lehman, Programs, life cycles, and laws of software evolution, Pro-
ceedings of the IEEE 68 (Sept. 1980) 1060–1076.

[2] S. Ducasse, D. Pollet, Software architecture reconstruction: A process-
oriented taxonomy, IEEE Transactions on Software Engineering 35
(2009) 573–591.

[3] D. Pollet, S. Ducasse, L. Poyet, I. Alloui, S. Ĉımpan, H. Verjus, To-
wards a process-oriented software architecture reconstruction taxon-
omy, in: R. Krikhaar, C. Verhoef, G. Di Lucca (Eds.), Proceedings
of 11th European Conference on Software Maintenance and Reengineer-
ing (CSMR’07), IEEE Computer Society, 2007, pp. 137–148. Best Paper
Award.

[4] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
Addison-Wesley Professional, 1997.

[5] P. Kruchten, The 4+1 view model of architecture, IEEE Softw. 12
(1995) 42–50.

[6] C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture,
Addison-Wesley, 2000.

[7] D. E. Perry, A. L. Wolf, Foundations for the study of software architec-
ture, SIGSOFT Softw. Eng. Notes 17 (1992) 40–52.

36

[8] D. Garlan, R. Allen, J. Ockerbloom, Architectural mismatch: Why
reuse is still so hard, IEEE Softw. 26 (2009) 66–69.

[9] M. Jazayeri, On architectural stability and evolution, in: Reliable
Software Technlogies-Ada-Europe 2002., Springer, 2002, pp. 304–315.

[10] G. Murphy, D. Notkin, K. Sullivan, Software reflexion models: Bridg-
ing the gap between source and high-level models, in: Proceedings of
SIGSOFT ’95, Third ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ACM Press, 1995, pp. 18–28.

[11] H. Muller, K. Klashinsky, Rigi: a system for programming-in-the-large,
Software Engineering, 1988., Proceedings of the 10th International Con-
ference on (1988) 80–86.

[12] M.-A. D. Storey, H. A. Müller, Manipulating and documenting software
structures using SHriMP Views, in: Proceedings of ICSM ’95 (Interna-
tional Conference on Software Maintenance), IEEE Computer Society
Press, 1995, pp. 275–284.

[13] B. Shneiderman, The eyes have it: A task by data type taxonomy for
information visualizations, in: IEEE Visual Languages, College Park,
Maryland 20742, U.S.A., pp. 336–343.

[14] K. Gallagher, A. Hatch, M. Munro, Software architecture visualization:
An evaluation framework and its application, IEEE Transactions on
Software Engineering 34 (2008) 260–270.

[15] A. L. Buchsbaum, J. R. Westbrook, Maintaining hierarchical graph
views, in: Proceedings of the eleventh annual ACM-SIAM symposium
on Discrete algorithms, SODA ’00, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000, pp. 566–575.

[16] M. Lanza, S. Ducasse, Polymetric views - a lightweight visual approach
to reverse engineering, Software Engineering, IEEE Transactions on 29
(2003) 782–795.

[17] K. Wong, The reverse engineering notebook, Ph.D. thesis, University of
Victoria, Victoria, B.C., Canada, Canada, 2000.

37

[18] M.-A. D. Storey, D. Cubranić, D. M. German, On the use of visualization
to support awareness of human activities in software development: a
survey and a framework, in: SoftVis ’05: Proceedings of the 2005 ACM
symposium on Software visualization, ACM, New York, NY, USA, 2005,
pp. 193–202.

[19] I. S. 1471-2000, IEEE Std 1471-2000. IEEE recommended practice for
architectural description of software-intensive systems., IEEE Architec-
ture Working Group, 2000.

[20] G. G. Robertson, J. D. Mackinlay, S. K. Card, Cone trees: animated 3d
visualizations of hierarchical information, in: CHI ’91: Proceedings of
the SIGCHI conference on Human factors in computing systems, ACM
Press, New York, NY, USA, 1991, pp. 189–194.

[21] B. S. Mitchell, S. Mancoridis, On the automatic modularization of soft-
ware systems using the bunch tool, IEEE Trans. Softw. Eng. 32 (2006)
193–208.

[22] I. Aracic, T. Schaeffer, M. Mezini, K. Osterman, A Survey on Inter-
active Grouping and Filtering in Graph-based Software Visualizations,
Technical Report, Technische Universität Darmstadt, 2007.

[23] M. Lungu, M. Lanza, Exploring inter-module relationships in evolving
software systems, in: Proceedings of CSMR 2007 (11th European Con-
ference on Software Maintenance and Reengineering), IEEE Computer
Society Press, Los Alamitos CA, 2007, pp. 91–100.

[24] M. Lungu, M. Lanza, Softwarenaut: cutting edge visualization, in:
SoftVis ’06: Proceedings of the 2006 ACM symposium on Software vi-
sualization, ACM, New York, NY, USA, 2006, pp. 179–180.

[25] T. Gı̂rba, Modeling History to Understand Software Evolution, Ph.D.
thesis, University of Berne, Berne, 2005.

[26] G. Antoniol, M. Di Penta, E. Merlo, An automatic approach to identify
class evolution discontinuities, in: IWPSE ’04: Proceedings of the Prin-
ciples of Software Evolution, 7th International Workshop, IEEE Com-
puter Society, Washington, DC, USA, 2004, pp. 31–40.

38

[27] S. Tichelaar, Modeling Object-Oriented Software for Reverse Engineer-
ing and Refactoring, Ph.D. thesis, University of Bern, 2001.

[28] P. F. Mihancea, G. Ganea, I. Verebi, C. Marinescu, R. Marinescu, Mcc
and mc#: Unified c++ and c# design facts extractors tools, Sym-
bolic and Numeric Algorithms for Scientific Computing, International
Symposium on 0 (2007) 101–104.

[29] R. Koschke, Atomic architectural component recovery for program un-
derstanding and evolution, Software Maintenance, 2002. Proceedings.
International Conference on (2002) 478–481.

[30] M. Lungu, A. Kuhn, T. Gı̂rba, M. Lanza, Interactive exploration of se-
mantic clusters, in: 3rd International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT 2005), pp. 95–100.

[31] O. Nierstrasz, S. Ducasse, T. Girba, The story of moose: an agile
reengineering environment, SIGSOFT Soft.Eng. Notes 30 (2005) 1–10.

[32] M. Lungu, M. Lanza, T. Gı̂rba, R. Robbes, The small project observa-
tory: Visualizing software ecosystems, EST special issue of the Science
of Computer Programming (2009).

[33] M. Lungu, Reverse Engineering Software Ecosystems, Ph.D. thesis, Uni-
versity of Lugano, 2009.

[34] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, P. Baldi,
Sourcerer: mining and searching internet-scale software reposito-
ries, Data Mining and Knowledge Discovery 18 (2009) 300–336.
10.1007/s10618-008-0118-x.

[35] M. Lungu, A. Kuhn, T. Gı̂rba, M. Lanza, Interactive exploration of se-
mantic clusters, in: 3rd International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT 2005), pp. 95–100.

[36] M. Lungu, M. Lanza, T. Girba, R. Robbes, The small project observa-
tory: Visualizing software ecosystems, Science of Computer Program-
ming, Elsevier 75 (2010) 264–275.

[37] A. Boeckmann, MARS - Modular Architecture Recommendation Sys-
tem, Bachelor’s thesis, University of Lugano, 2010.

39

[38] M. Lungu, M. Lanza, T. Gı̂rba, Package patterns for visual architecture
recovery, in: Proceedings of CSMR 2006 (10th European Conference
on Software Maintenance and Reengineering), IEEE Computer Society
Press, Los Alamitos CA, 2006, pp. 185–196.

[39] H. A. Müller, S. R. Tilley, M. A. Orgun, B. D. Corrie, N. H. Madhavji,
A reverse engineering environment based on spatial and visual software
interconnection models, in: SDE 5: Proceedings of the fifth ACM SIG-
SOFT symposium on Software development environments, ACM, New
York, NY, USA, 1992, pp. 88–98.

[40] R. Lintern, J. Michaud, M.-A. Storey, X. Wu, Plugging-in visualization:
experiences integrating a visualization tool with eclipse, in: SoftVis ’03:
Proceedings of the 2003 ACM symposium on Software visualization,
ACM, New York, NY, USA, 2003, pp. 47–ff.

[41] V. Sinha, D. Karger, R. Miller, Relo: Helping users manage context
during interactive exploratory visualization of large codebases, Visual
Languages and Human-Centric Computing, 2006. VL/HCC 2006. IEEE
Symposium on (2006) 187–194.

[42] A. Hindle, Z. M. Jiang, W. Koleilat, M. W. Godfrey, R. C. Holt, Yarn:
Animating software evolution, Visualizing Software for Understanding
and Analysis, International Workshop on 0 (2007) 129–136.

[43] R. Wettel, M. Lanza, R. Robbes, Software systems as cities: a controlled
experiment, in: Proceeding of the 33rd international conference on
Software engineering, ICSE ’11, ACM, New York, NY, USA, 2011, pp.
551–560.

[44] M. Pinzger, ArchView - Analyzing Evolutionary Aspects of Complex
Software Systems, Ph.D. thesis, Vienna University of Technology, 2005.

[45] A. Wierda, E. Dortmans, L. Lou Somers, Using version information
in architectural clustering - a case study, in: CSMR ’06: Proceedings
of the Conference on Software Maintenance and Reengineering, IEEE
Computer Society, Washington, DC, USA, 2006, pp. 214–228.

[46] D. Rayside, M. Litoiu, M.-A. Storey, C. Best, R. Lintern, Visualizing
flow diagrams in websphere studio using shrimp views, Information
Systems Frontiers 5 (2003) 161–174. 10.1023/A:1022649506310.

40

[47] M. D’Ambros, M. Lanza, A flexible framework to support collaborative
software evolution analysis, in: Proceedings of CSMR 2008 (12th Eu-
ropean Conference on Software Maintenance and Reengineering), IEEE
Computer Society, 2008, pp. 3–12.

[48] L. Hattori, M. D’Ambros, M. Lanza, M. Lungu, Software evolution
comprehension: Replay to the rescue, in: Proceedings of The 19th IEEE
International Conference on Program Comprehension, pp. 161–170.

[49] S. Hupfer, L.-T. Cheng, S. Ross, J. Patterson, Introducing collaboration
into an application development environment, in: Proceedings of the
2004 ACM conference on Computer supported cooperative work, CSCW
’04, ACM, New York, NY, USA, 2004, pp. 21–24.

41

	Introduction
	Information Abstraction
	Interactive Exploration
	Navigation
	Filtering
	Highlighting
	Details-on-Demand
	Inspectors for Modules
	Inspectors for Relationships

	Evolutionary Analysis
	Evolutionary Inspectors for Relationships
	Evolutionary Inspectors for Modules
	Evolutionary Filters

	Collaboration Through First-Class Views
	First-Class Views
	Sharing and Discovering Architectural Views

	The Architecture of Softwarenaut
	Fact Extraction and Modelling
	Integration with the Moose Analysis Platform
	Mechanisms for Tool Extension
	Softwarenaut Synergies

	Tool-Building Considerations
	The Tool as a Vehicle for Research
	Studying the Usability of the Tool
	Depending on Other Research Prototypes
	Availability and Documentation

	Related Work
	Exploration and Navigation
	Evolutionary Analysis
	Collaboration

	Conclusions and Future Work

