
Fractal Figures: Visualizing Development Effort for CVS Entities

Marco D’Ambros and Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

Harald Gall
s.e.a.l. - software evolution and architecture lab

University of Zurich, Switzerland

Abstract

Versioning systems such as CVS or Subversion exhibit a
large potential to investigate the evolution of software sys-
tems. They are used to record the development steps of soft-
ware systems as they make it possible to reconstruct the
whole evolution of single files. However, they provide no
good means to understand how much a certain file has been
changed over time and by whom. In this paper we present
an approach to visualize files using fractal figures, which (1)
convey the overall development effort, (2) illustrate the dis-
tribution of the effort among various developers, and (3) al-
low files to be categorized in terms of the distribution of
the effort following gestalt principles. Our approach allows
us to discover files of high development efforts in terms of
team size and effort intensity of individual developers. The
visualizations allow an analyst or a project manager to get
first insights into team structures and code ownership prin-
ciples. We have analyzed Mozilla as a case study and we
show some of the recovered team development patterns in
this paper as a validation of our approach.

1.. Introduction

Software versioning systems appeared more than thirty
years ago and are widely used since more than two decades
[13] [15] [5], especially in conjunction with the advent of
open source software. Recording the history of a software
system during its development allows reconstructing the
original design intentions of the developers, as well as their
subsequent variations in time. Versioning systems also ease
team software development. The facilities given by version-
ing systems and the amount of data retrieved fostered the re-
search field of software evolution [10], whose goal is to an-
alyze the history of a software system and infer causes to its
current problems, and possibly predict its future.

Visualization techniques were widely used to study the
evolution of software systems [1, 2, 7, 12, 14, 16], but none
of them is focused on development effort and authors.

The question we want to answer with this paper is

whether we can efficiently convey (1) how a certain file has
been modified over time (in terms of effort, i.e., modifica-
tions), and (2) who participated in its development and to
which extent.

In this paper we present Fractal Figures, a scalable vi-
sualization technique to understand the evolution of soft-
ware entities with respect to the involved developers. Frac-
tal Figures can visualize not only the basic CVS products1

but also abstracted products, e.g., the containing directories
or a complete directory subtree. Fractal Figures also con-
very gestalt impressions, based on which it is possible to
categorize the represented artifacts.

All the results and the examples presented in the paper
have been obtained by applying the presented visualization
technique on the Mozilla [11] case study.

2.. The TIMELINE VIEW

The questions we are trying to answer when consider-
ing a specific artifact in a software system (e.g., a file) is
(1) how much has this file been changed, (2) by whom, and
(3) to which extent are certain developers responsible for its
evolution.

A possible way to partially answer these questions is de-
picted in Figure 1: It shows a TIMELINE VIEW (time as the
horizontal axis from left to right) where the visualized rect-
angles represent revisions on CVS products (i.e., files). In
this figure we see the evolution of 3 specific files between
2001 and 2003, the exact horizontal position is determined
using the CVS commit time-stamp. The colors represent the
different authors, i.e., the person who committed the file re-
vision to the CVS repository.

This timeline view conveys the following information:
The product in the middle has many more revisions than the
others and seems to have been changed by several develop-
ers. Still, it fails at giving us both a qualitative and quanti-
tative impression about the development effort and distribu-
tion among developers for each CVS product. It is not clear
how much work each developer spent on a particular prod-

1 A CVS product is a file as stored in the CVS repository.



Figure 1. A TIMELINE VIEW applied to three CVS products of Mozilla

uct. Moreover, it does not scale well (i.e., the author infor-
mation is quickly unreadable) if the number of products or
revisions is high.

To have a scalable view we need to encapsulate all the
author-related information belonging to a product (i.e., a
line in the TIMELINE VIEW) into one single figure: A Frac-
tal Figure. This has the drawback of losing the time dimen-
sion, but we do not consider this as being a problem as in
our tool implementation one can quickly navigate back and
forth between the two views.

3.. The Fractal View

A Fractal Figure (see Figure 2) gives an immediate view
of how (in terms of development effort and distribution
among authors) a product has been developed. We can eas-
ily figure out whether the development was done mainly by
one author or whether many people contributed to it and in
what intensity each contribution was.

The figure is composed of a set of rectangles having dif-
ferent sizes and colors. Each rectangle, and thus each color,
is mapped to an author who worked on the product. The area
of the rectangle is proportional to the percentage of check-
ins performed by the author over the whole set of check-ins.

This visualization technique can be enriched by render-
ing a software metric measurement on the size of the figure
(only one because the figure must be a square). This is use-
ful for views containing many Fractal Figures.

3.1.. Construction principles

As example we consider the nsTextHelper.cpp product of
Mozilla. Table 1 shows the developers who worked on the
product and, for each of them, the number of commits per-
formed.

Figure 2 depicts the construction process of the corre-
sponding Fractal Figure representing the nsTextHelper.cpp

Author Commits
warren@netscape.com 5
gerv@gerv.net 2
dcone@netscape.com 2
dbaron@fas.harvard.edu 1
cltbld@netscape.com 1
pierre@netscape.com 1
dmose@mozilla.org 1
jaggernaut@netscape.com 1
8 developers 14 commits

Table 1. Development distribution on the CVS
product nsTextHelper.cpp.

product. The first rectangle rendered is the one correspond-
ing to the author having the highest number of commits,
namely warren@netscape.com. The area of the rect-
angle is 5/14 of the total area since the number of com-
mits performed by warren@netscape.com is 5 while the to-
tal number is 14. All the other rectangles are rendered in the
same way, changing the direction of the longer side each
time.

Treemaps. Fractal Figures have some resemblance to
treemaps [8]. The main difference is the underlying data:
treemaps are targeted at hierarchically organized data, while
in our case it is raw, sorted, numerical data without any
structure. Moreover, as we see later on, Fractal Figures al-
low for gestalt impressions to categorize them, while our
experiments with treemaps did not yield the same effective
results.

Layout Algorithm. Why do we swap the long side and
the short side of the rectangles each time, instead of ren-
dering always in the same direction? Our current layout al-
gorithm makes the rectangles visible even when there are
many, while experiments with rendering in the same direc-
tion (i.e., splitting the whole rectangle always horizontally)
does not scale. We claim that Fractal Figures are scalable,
but what happens when there are hundreds of authors? In



Figure 2. The structural principles of a Fractal Figure.

such a case, the Fractal Figure will only convey that the de-
velopment is fragmented among many authors.

4.. Fractal Figures in Action

Fractal Figures allow us to reason about the development
effort of entities from the authors point of view. We can
compare entities looking at their figures and classify them
according to development models represented by well de-
fined patterns.

4.1.. Classifying CVS products with Fractal Figures

We distinguish 4 major development patterns, associated
with Fractal Figures similar to those shown in Figure 3:
Only one developer (a), only few developers and balanced
effort (b), many developers but unbalanced effort—one per-
formed half of the work, all the others performed the sec-
ond half together—(c), and many developers performing
roughly the same amount of work (d).

4.2.. Using Fractal Figures in Polymetric Views

An efficient way to exploit the expressive power of Frac-
tal Figures is in combination with polymetric views [9] to
represent a set of entities, i.e., products, directories or mod-
ules.

Examples of applicable software metrics in a CVS con-
text are: Number of revisions, number of products (for di-
rectories and modules), number of bugs2, number of au-
thors, etc.

The metrics can also be aggregated for higher-level en-
tities such as directories (e.g., the number of revisions of a

2 The bugs information is not included in the CVS repository. See [3,4]
for how to retrieve such data.

(a) One developer (b) Few balanced devel-
opers

(c) One major and many
minor developers

(d) Many balanced devel-
opers

Figure 3. Development patterns based on the
gestalt of Fractal Figures.

directory is the sum of the numbers of revisions of all con-
tained CVS products), thus also allowing a categorization
of those higher-level entities in terms of development ef-
fort and distribution.

4.3.. Examples from Mozilla

In the following, we illustrate some example polymetric
views using Fractal Figures. All the views are based on the
Mozilla project. Due to space limitations we cannot present
an in-depth analysis. For a complete analysis of the whole
system, we refer the reader to [3].



Figure 4. The webshell hierarchy of Mozilla.

Example 1 – Mozilla Webshell

Figure 4 shows the webshell hierarchy of Mozilla. The
Fractal Figures represent directories including at least one
product, while grey figures are associated with container di-
rectories, i.e., directories containing only subdirectories. As
size metric we use the number of products.

The figure marked as 1 represents the largest directory,
i.e., the directory containing the highest number of prod-
ucts. It exhibits a many balanced developers development
pattern. The set of figures highlighted in red (marked as 2)
is characterized by: (1) they belong to the same hierarchi-
cal structure; (2) they exhibit a one developer, or mainly one
developer pattern; (3) some of them contain a great amount
of products. These directories contain a large set of logi-
cally coupled products (because of the hierarchical struc-
ture) managed by only a few authors.

Example 2 - Mozilla XPInstall and LibEditor

Figure 5 and 6 show the xpinstall/src and edi-
tor/libeditor/html directories of Mozilla. Fractal Fig-
ures represent products and as size metric we use the
number of revisions. The Fractal Figures represent-
ing the high level entities, i.e., the directories, are also
depicted.

The directory xpinstall/src contains figures having both
similar sizes and similar patterns; a balanced directory, i.e.,
all the products equally contribute to the directory develop-
ment pattern (see Figure 5).

Figure 5. The xpinstall/src directory of
Mozilla.

Figure 6. The editor/libeditor/html directory
of Mozilla.

The directory editor/libeditor/html contains a huge fig-
ure (marked as 1), with respect to the average figure size.
The development pattern of the product represented by this
figure is reflected in the directory (many balanced develop-
ers). The products marked as 2 are also interesting. They
are likely to be logically coupled because: (1) they have the
same development patterns and a similar appearance; (2)
their development patterns are different from that charac-
terizing the directory.



5.. Development patterns and the Fractal Value

In Section 4 we have seen how Fractal Figures can be
enriched by mapping a metric measurement on their size.
This feature not only increases the amount of information
encapsulated in the figure, but also gives us the possibil-
ity to study the relationship between the development pat-
tern (i.e., the Fractal Figure appearance in terms of fragment
numbers and layout) and the size.

Fractal Figures give us only a qualitative impression of
the development pattern, while we need a quantitative mea-
surement to postulate empirical laws. This measurement is
given by the Fractal Value.

5.1.. The Fractal Value

The Fractal Value measures how “fractalized” a Fractal
Figure is, that is how much the work spent on the corre-
sponding entity is distributed among different developers. It
is formally defined as:

Fractal Value = 1−
∑
ai∈A

(nc(ai)
NC

)2

, (1)

NC =
∑
ai∈A

nc(ai) (2)

where A = {a1, a2, . . . , an} is the set of authors and
nc(ai) is the number of commits performed by the au-
thor ai.

Figure 7. Visualizing the Fractal Value metric.

Looking at equation 1, we notice that:

• Since the square equation is sub-linear between 0 and
1, the smaller the quantity nc(ai)

NC is (always less than
1), the more it is reduced by the square power. There-
fore, the smaller a rectangle is, the lesser its negative
contribution to the Fractal Value is.

• The Fractal Value ranges from 0 to 1 (not reachable). It
is 0 for entities developed by one author only, while it
tends to 1 for entities developed by a large number of
authors (see Figure 7). Table 2 shows the Fractal Val-
ues of the Fractal Figures of Figure 3.

Development Pattern Fractal Value
One developer 0

One major and many minor developers 0.75
Few balanced developers 0.85

Many balanced developers 0.998

Table 2. Fractal Values of the four typical de-
velopment patterns.

Figure 8. The relation between Fractal Value
and number of bugs for Mozilla.

5.2.. Correlation Views

Using the Fractal Value we can verify whether a rela-
tion between the development pattern and another software
metric holds. In this case we choose to verify whether the
number of authors is correlated with the number of bugs af-
fecting a CVS product. We do that by representing products
with fixed size squares and by mapping the Fractal Value
and the considered metric (number of bugs) on their posi-
tions.

The resulting view is shown in Figure 8: It allows us to
postulate the following empirical observation: ”The more
the development of a product is distributed among differ-
ent authors, the greater is the number of bugs affecting it”.

As a result, our Fractal Figures can be effectively com-
bined with information about bugs per file to reason about
the effectiveness of certain development patterns. For an an-
alyst or a project manager, this relationship can be quite
valuable since these visualizations allow him/her to re-
assess the current formation of the development teams. A
right-sizing activity can almost immediately follow from
the visualizations.

6.. Related Work

Ball and Eick [1] concentrated on visualization of differ-
ent aspects related to code-level such as code version his-



tory, difference between releases, static properties of code,
code profiling and execution hot spots, and program slices.
The basic concepts used in the visualization of the above
aspects are colors and pixel representations of source code
lines. In [7] Gall et al. presented an approach to use color
and 3D to visualize the evolution history of large soft-
ware systems. Colors were primarily used to highlight main
events of the system evolution and reveal unstable areas of
the system. Jazayeri analyzed the stability of the architec-
ture [6] by using colors to depict the changes. Taylor and
Munro [14] visualized CVS data with a technique called
revision towers. This technique uses color bars of varying
thickness and height to represent the current size, changes
and authors of a piece of code. These bars are animated
over time to show the development of the software repos-
itory. Collberg et al. [2] focus on the visualization of the
evolution of software using a temporal graph model. They
do not give any representation of the dimension of the ef-
fort. Rysselberghe and Demeyer [16] used a simple visu-
alization based on information in version control systems
(CVS) to provide an overview of the evolution of systems.
Their visualization technique consists in a matrix where the
columns represent files ordered by names and lines repre-
sent the time. In [12] Pinzger et al. proposed a visualiza-
tion technique to study the evolution of large software sys-
tems. The approach provides integrated condensed graphi-
cal views on source code and release history data of many
releases.

7.. Conclusion

Open-source projects have many contributing develop-
ers. We have investigated the question, whether and by what
means we can efficiently convey how much development ef-
fort particular files have accumulated over time and what
developer contributed to which extent.

For that, we have presented different visualiza-
tions, stemming from a TIMELINE VIEW of CVS products
and resulting in Fractual Figures of files. These visual-
izations exhibit development efforts and indicate devel-
opment patterns such as the four we discovered: one de-
veloper, only few developers and balanced effort, many
developers but unbalanced effort, and many develop-
ers and balanced effort.

Our Fractal Figures can be effectively combined with in-
formation about bugs per file to reason about the effective-
ness of certain development patterns.

The resulting Fractal Figures allows us to postulate the
following empirical observation: ”The more the develop-
ment of a product is distributed among different authors,
the greater is the number of bugs affecting it”.

For an analyst or a project manager, this relationship can
be quite valuable since these visualizations allow him/her to

re-assess the current formation of the development teams.
A right-sizing activity can almost immediately follow from
the visualizations.

References

[1] T. Ball and S. Eick. Software visualization in the large. IEEE
Computer, pages 33–43, 1996.

[2] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler.
A system for graph-based visualization of the evolution of
software. In Proceedings of the 2003 ACM Symposium on
Software Visualization, pages 77–86. ACM Press, 2003.

[3] M. D’Ambros. Software archaeology - reconstructing the
evolution of software systems. Master thesis, Politecnico di
Milano, Apr. 2005.

[4] M. Fischer, M. Pinzger, and H. Gall. Populating a release his-
tory database from version control and bug tracking systems.
In Proceedings of the International Conference on Software
Maintenance (ICSM 2003), pages 23–32, Sept. 2003.

[5] D. Grune. Concurrent Versions system, a method for in-
dependent cooperation. Technical report, Vrije Universiteit,
Amsterdam, Netherlands, 1986.

[6] M. Jazayeri. On architectural stability and evolution. In Re-
liable Software Technlogies-Ada-Europe 2002, pages 13–23.
Springer Verlag, 2002.

[7] M. Jazayeri, H. Gall, and C. Riva. Visualizing software re-
lease histories: The use of color and third dimension. In
ICSM ’99 Proceedings (International Conference on Soft-
ware Maintenance), pages 99–108. IEEE Computer Society,
1999.

[8] B. Johnson and B. Shneiderman. Tree-maps: A space-
filling approach to the visualization of hierarchical informa-
tion structures. In Proc. of Visualization’91, pages 284–291,
San Diego, CA, 1991.

[9] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering. IEEE Transactions
on Software Engineering, 29(9):782–795, Sept. 2003.

[10] M. M. Lehman and L. Belady. Program Evolution — Pro-
cesses of Software Change. London Academic Press, 1985.

[11] Mozilla home page. http://www.mozilla.org/.
[12] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing

multiple evolution metrics. In Proceedings of SoftVis 2005,
ACM Symposium on Software Visualization, pages 67–76, St.
Louis, Missouri, 2005.

[13] M. J. Rochkind. The Source Code Control System. Trans-
actions on Software Engineering, 1(4):364–370, 1975.

[14] C. M. B. Taylor and M. Munro. Revision towers. In Proceed-
ings of the 1st International Workshop on Visualizing Soft-
ware for Understanding and Analysis, pages 43–50. IEEE
Computer Society, 2002.

[15] W. F. Tichy. RCS — a system for version control. Software
— Practice and Experience, 15(7):637–654, 1985.

[16] F. Van Rysselberghe and S. Demeyer. Studying software evo-
lution information by visualizing the change history. In Pro-
ceedings of The 20th IEEE International Conference on Soft-
ware Maintenance (ICSM 2004), 2004. to appear.


