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Abstract—Reliably predicting software defects is one of soft-
ware engineering’s holy grails. Researchers have devised and
implemented a plethora of bug prediction approaches varying
in terms of accuracy, complexity and the input data they
require. However, the absence of an established benchmark
makes it hard, if not impossible, to compare approaches.

We present a benchmark for defect prediction, in the
form of a publicly available data set consisting of several
software systems, and provide an extensive comparison of the
explanative and predictive power of well-known bug prediction
approaches, together with novel approaches we devised.

Based on the results, we discuss the performance and
stability of the approaches with respect to our benchmark and
deduce a number of insights on bug prediction models.

I. INTRODUCTION

Defect prediction has generated widespread interest for a
considerable period of time. The driving scenario is resource
allocation: Time and manpower being finite resources, it
makes sense to assign personnel and/or resources to areas of
a software system with a higher probable quantity of bugs.

A variety of approaches have been proposed to tackle the
problem, relying on diverse information, such as code met-
rics [1]–[8] (lines of code, complexity), process metrics [9]–
[12] (number of changes, recent activity) or previous defects
[13]–[15]. The jury is still out on the relative performance
of these approaches. Most of them have been evaluated in
isolation, or were compared to only few other approaches.
Moreover, a significant portion of the evaluations cannot be
reproduced since the data used by them came from commer-
cial systems and is not available for public consumption. As
a consequence, articles reached opposite conclusions: For
example, in the case of size metrics, Gyimothy et al. reported
good results [6] unlike Fenton et al. [16].

What is missing is a baseline against which the ap-
proaches can be compared. We provide such a baseline by
gathering an extensive dataset composed of several open-
source systems. Our dataset contains the information re-
quired to evaluate several approaches across the bug predic-
tion spectrum on a number of systems large enough to have
confidence in the results. The contributions of this paper are:
• A public benchmark for defect prediction, containing

enough data to evaluate several approaches. For five
open-source software systems, we provide, over a five-
year period, the following data: (1) process metrics on

all the files of each system, (2) system metrics on bi-
weekly versions of each system, (3) defect information
related to each system file, and (4) bi-weekly models
of each system version if new metrics need to be
computed.

• The evaluation of a representative selection of defect
prediction approaches from the literature.

• Two novel bug prediction approaches based on bi-
weekly samples of the source code. The first measures
code churn as deltas of source code metrics instead of
line-based code churn. The second extends Hassan’s
concept of entropy of changes [10] to source code
metrics. These techniques provide the best and most
stable prediction results in our comparison.
Structure of the paper: In Section II we present an

overview of related work in defect prediction. We describe
our benchmark and evaluation procedure in Section III. In
Section IV, we detail the approaches that we reproduce and
the ones that we introduce. We report on their performance
in Section V. In Section VI, we discuss possible threats to
the validity of our findings, and we conclude in Section VII.

II. DEFECT PREDICTION

We describe several approaches to defect prediction, the
kind of data they require and the various data sets on which
they were validated. All approaches require a defect archive
to be validated, but do not necessarily require it to actually
perform their analysis. When they do, we indicate it.

Change Log Approaches use information extracted from
the versioning system, assuming that recently or frequently
changed files are the most probable source of future bugs.

Nagappan and Ball performed a study on the influence
of code churn (i.e., the amount of change to the system)
on the defect density in Windows Server 2003. They found
that relative code churn was a better predictor than absolute
churn [9]. Hassan introduced the entropy of changes, a
measure of the complexity of code changes [10]. Entropy
was compared to amount of changes and the amount of
previous bugs, and was found to be often better. The entropy
metric was evaluated on six open-source systems: FreeBSD,
NetBSD, OpenBSD, KDE, KOffice, and PostgreSQL. Moser
et al. used metrics (including code churn, past bugs and
refactorings, number of authors, file size and age, etc.), to
predict the presence/absence of bugs in files of Eclipse [11].



The mentioned techniques do not make use of the defect
archives to predict bugs, while the following ones do.

Hassan and Holt’s top ten list approach validates heuristics
about the defect-proneness of the most and most recently
changed and bug-fixed files, using the defect repository data
[15]. The approach was validated on six open-source case
studies: FreeBSD, NetBSD, OpenBSD, KDE, KOffice, and
PostgreSQL. They found that recently modified and fixed
entities were the most defect-prone. Ostrand et al. predict
faults on two industrial systems, using change and defect
data [14]. The bug cache approach by Kim et al. uses
the same properties of recent changes and defects as the
top ten list approach, but further assumes that faults occur
in bursts [13]. The bug-introducing changes are identified
from the SCM logs. Seven open-source systems were used
to validate the findings (Apache, PostgreSQL, Subversion,
Mozilla, JEdit, Columba, and Eclipse). Bernstein et al. use
bug and change information in non-linear prediction models
[12]. Six eclipse plugins were used to validate the approach.

Single-version approaches assume that the current de-
sign and behavior of the program influences the presence of
future defects. These approaches do not require the history
of the system, but analyze its current state in more detail,
using a variety of metrics. One standard set of metrics used
is the Chidamber and Kemerer (CK) metrics suite [17].

Basili et al. used the CK metrics on eight medium-
sized information management systems based on the same
requirements [1]. Ohlsson et al. used several graph metrics
including McCabe’s cyclomatic complexity on an Ericsson
telecom system [2]. El Emam et al. used the CK metrics
in conjunction with Briand’s coupling metrics [3] to predict
faults on a commercial Java system [4]. Subramanyam et
al. used CK metrics on a commercial C++/Java system [5];
Gyimothy et al. performed a similar analysis on Mozilla
[6]. Nagappan and Ball estimated the pre-release defect
density of Windows Server 2003 with a static analysis tool
[7]. Nagappan et al. used a catalog of source code metrics
to predict post release defects at the module level on five
Microsoft systems, and found that it was possible to build
predictors for one individual project, but that no predictor
would perform well on all the projects [8]. Zimmermann et
al. applied a number of code metrics on Eclipse [18].

Other Approaches. Zimmermann and Nagappan used
dependencies between binaries in Windows server 2003
to predict defect [19]. Marcus et al. used a cohesion
measurement based on LSI for defect prediction on
several C++ systems, including Mozilla [20]. Neuhaus
et al. used a variety of features of Mozilla (past bugs,
package imports, call structure) to detect vulnerabilities [21].

Observations We observe that both case studies and the
granularity of approaches vary. Varying case studies make
a comparative evaluation of the results difficult. Validations
performed on industrial systems are not reproducible, be-

cause it is not possible to obtain the data that was used. There
is also some variation among open-source case studies, as
some approaches have more restrictive requirements than
others. With respect to the granularity of the approaches,
some of them predict defects at the class level, others
consider files, while others consider modules or directories
(subsystems), or even binaries. While some approaches
predict the presence or absence of bugs for each component,
others predict the amount of bugs affecting each component
in the future, producing a ranked list of components.

These observations explain the lack of comparison be-
tween approaches and the occasional diverging results when
comparisons are performed. In the following, we present a
benchmark to establish a common ground for comparison.

III. EXPERIMENTS

We compare different bug prediction approaches in the
following way: Given a release x of a software system s,
released at date d, the task is to predict, for each class of
x, the number of post release defects, i.e., the number of
defects reported from d to six months later. We chose the
last release of the system in the release period and perform
class-level defect prediction, and not package- or subsystem-
level defect prediction, for the following reasons:
• Predictions at the package-level are less helpful since

packages are significantly larger. The review of a
defect-prone package requires more work than a class.

• Classes are the building blocks of object-oriented sys-
tems, and are self-contained elements from the point of
view of design and implementation.

• Package-level information can be derived from class-
level information, while the opposite is not true.

We predict the number of bugs in each class –not the
presence/absence of bugs– as this better fits the resource
allocation scenario, where we want an ordered list of classes.
We use post-release defects for validation (i.e., not all defects
in the history) to emulate a real-life scenario. As in [18] we
use a six months time interval for post-release defects.

A. Benchmark Dataset

Our dataset is composed of the change, bug and version
information of the five systems detailed in Figure 1.

We provide, for each system: The data extracted from
the change log, including reconstructed transaction and links
from transactions to model classes; The defects extracted
from the defect repository, linked to the transactions and the
system classes referencing them; Biweekly versions of the
systems parsed into object-oriented models; Values of all the
metrics used as predictors, for each version of each class of
the system; And post-release defect counts for each class.
All systems are written in Java to ensure that all the code
metrics are defined identically for each system. By using the
same parser, we can avoid issues due to behavior differences
in parsing, a known issue for reverse engineering tools [22].



System Prediction release Time period #Classes #Versions #Transactions #Post-rel. defects

Eclipse JDT Core 
www.eclipse.org/jdt/core/

3.4 1.1.2005 - 6.17.2008 997 91 9,135 463

Eclipse PDE UI 
www.eclipse.org/pde/pde-ui/

3.4.1 1.1.2005 - 9.11.2008 1,562 97 5,026 401

Equinox framework 
www.eclipse.org/equinox/

3.4 1.1.2005 - 6.25.2008 439 91 1,616 279

Mylyn
www.eclipse.org/mylyn/

3.1 1.17.2005 - 3.17.2009 2,196 98 9,189 677

Apache Lucene 
lucene.apache.org

2.4.0 1.1.2005 - 10.8.2008 691 99 1,715 103

Figure 1. Systems in the benchmark.
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Figure 2. The types of data used by different bug prediction approaches.

Data Collection. Figure 2 shows the types of information
needed by the compared bug prediction approaches.

We need the following information: (1) change log infor-
mation to extract process metrics; (2) source code version
information to compute source code metrics; and (3) defect
information linked to classes for both the prediction and
validation. Figure 3 shows how we gather this information,
given an SCM system (CVS/Subversion) and a defect track-
ing system (Bugzilla/Jira).

Creating a History Model. To compute the various
process metrics, we model how the system changed during
its lifetime by parsing the versioning system log files. We
create a model of the history of the system using the
transactions extracted from the system’s SCM repository.
A transaction (or commit) is a set of files which were
modified and committed to the repository, together with the
timestamp, the author and the comment. SVN marks co-
changing files at commit time as belonging to the same
transaction while for CVS we infer transactions from each
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Compute 
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Figure 3. Model with bug, change and history.

file’s modification time, commit comment, and author.
Creating a Source Code Model. We retrieve the source

code from the SCM repository and we extract an object-
oriented model of it according to FAMIX, a language
independent meta-model of object oriented code [23]. Since
we need several versions of the system, we repeat this
process at bi-weekly intervals over the history period we
consider.
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Figure 4. Linking bugs, SCM files and classes.

Linking Classes with Bugs. To reason about the presence
of bugs affecting parts of the software system, we first map
each problem report to the components of the system that
it affects. We link FAMIX classes with versioning system
files and bugs retrieved from Bugzilla and Jira repositories,
as shown in Figure 4. A file version in the versioning
system contains a developer comment written at commit
time, which often includes a reference to a problem report
(e.g., “fixed bug 123”). Such references allow us to link
problem reports with files in the versioning system (and thus
with classes). However, the link between a CVS/SVN file
and a Bugzilla/Jira problem report is not formally defined:
We use pattern matching to extract a list of bug id candidates
[18], [24]. Then, for each bug id, we check whether a bug
with such an id exists in the bug database and, if so, we
retrieve it. Finally we verify the consistency of timestamps,
i.e., we reject any bug whose report date is after the commit
date.

Due to the file-based nature of SVN and CVS and to
the fact that Java inner classes are defined in the same file
as their containing class, several classes might point to the
same CVS/SVN file, i.e., a bug linking to a file version might
be linking to more than one class. We are not aware of a
workaround for this problem, which in fact is a shortcoming
of the versioning system. For this reason, we do not consider
inner classes. We also filter out test classes from our dataset.

Computing Metrics. At this point we have a model
including source code information over several versions,
change history, and defects data. The last step is to enrich
it with the metrics we want to evaluate. We describe the
metrics as they are introduced with each approach.

Tools. To create our dataset, we use the following tools:
• inFusion (developed by the company intooitus in Java

and available at http://www.intooitus.com/) to convert
Java source code to FAMIX models.

• Moose (developed in Smalltalk and available at http://
www.moosetechnology.org) to read FAMIX models and
to compute a number of source code metrics.

• Churrasco (developed in Smalltalk and available at
http://churrasco.inf.usi.ch) to create the history model,
to extract bug data and to link classes, versioning
system files and bugs.

B. Evaluating the Approaches

To compare bug prediction approaches we apply them on
the same software systems and, for each system, on the same
data set. We consider the last major releases of the software
systems and compute the predictors up to the releases dates.

We base our predictions on generalized linear regression
models built from the metrics we computed. The indepen-
dent variables (used in the prediction) are the set of metrics
under study for each class, while the dependent variable
(the predicted one) is the number of post-release defects.
Following the method proposed by Nagappan et al. [8],
we perform principal component analysis, build regression
models, and evaluate explanative and predictive power.

Principal Component Analysis (PCA) [25] avoids the
problem of multicollinearity among the independent vari-
ables. This problem comes from intercorrelations amongst
these variables and can lead to an inflated variance in the
estimation of the dependent variable. We do not build the
regression models using the actual variables (e.g., metrics)
as independent variables, but instead we use sets of principal
components (PC), which are independent and therefore do
not suffer from multicollinearity, while at the same time they
account for as much sample variance as possible. We select
PCs that account for at least 95% of the variance.

Building Regression Models. We do cross validation, i.e.,
we use 90% of the dataset (90% of the classes – training
set) to build the prediction model, and the remaining 10%
(validation set) to evaluate the accuracy of the model. For
each model we perform 50 folds, i.e., we create 50 random
90%-10% splits of the data.

Evaluating Explanative Power. We use the adjusted
R2 coefficient. The (non-adjusted) R2 is the ratio of the
regression sum of squares to the total sum of squares. It
ranges from 0 to 1, and quantifies the variability in the
data explained by the model. The adjusted R2, accounts for
degrees of freedom of the independent variables and the
sample population; it is consistenly lower than R2. When
reporting results, we only mention the adjusted R2. We test
the statistical significance of the regression models using the
F-test (99% significance, p < 0.01).

Evaluating Predictive Power. We compute the Spearman
correlation between the predicted number of defects and
the actual number. The Spearman correlation is computed
on two lists (classes ordered by actual number of bugs
and classes ordered by number of predicted bugs) and is
an indicator of the similarity of their order. We decided
to measure the correlation with the Spearman coefficient
(instead of, for example, the Pearson coefficient), as it is
recommended with skewed data (which is the case here, as
most classes have no bugs).We compute the Spearman on
the validation set, which is 10% of the original dataset. Since
we perform 50 folds cross validation, the final values of the
Spearman and adjusted R2 are averages over 50 folds.

http://www.intooitus.com/
http://www.moosetechnology.org
http://www.moosetechnology.org
http://churrasco.inf.usi.ch


IV. BUG PREDICTION APPROACHES

Table I summarizes the bug prediction approaches that we
compare. In the following we detail each approach.

Type Rationale Used by
Change metrics Bugs are caused by changes. Moser [11]
Previous defects Past defects predict future defects. Kim [13]
Source code met-
rics

Complex components are harder
to change, and hence error-prone.

Basili [1]

Entropy of
changes

Complex changes are more error-
prone than simpler ones.

Hassan [10]

Churn (source
code metrics)

Source code metrics are a better
approximation of code churn.

Novel

Entropy (source
code metrics)

Source code metrics better de-
scribe the entropy of changes.

Novel

Table I
CATEGORIES OF BUG PREDICTION APPROACHES.

A. Change Metrics

We selected the approach of Moser et al. as a represen-
tative, and describe three additional variants.

MOSER. We use the catalog of file-level change metrics
introduced by Moser et al. [11] listed in Table II. The
metric NFIX represents the number of bug fixes as extracted
from the versioning system, not the defect archive. It uses
a heuristic based on pattern matching on the comments of
every commit. To be recognized as a bug fix, the com-
ment must match the string “%fix%” and not match the
strings “%prefix%” and “%postfix%”. The bug repository
is not needed, because all the metrics are extracted from
the CVS/SVN logs, thus simplifying data extraction. For
systems versioned using SVN (such as Lucene) we perform
some additional data extraction, since the SVN logs do not
contain information about lines added and removed.

NR Number of revisions
NREF Number of times file has been refactored
NFIX Number of times file was involved in bug-fixing
NAUTH Number of authors who committed the file
LINES Lines added and removed (sum, max, average)
CHURN Codechurn (sum, maximum and average)
CHGSET Change set size (maximum and average)
AGE Age and weighted age

Table II
CHANGE METRICS USED BY MOSER et al.

NFIX: Zimmermann et al. showed that the number of
past defects has the highest correlation with number of
future defects [18]. We inspect the accuracy of the bug fix
approximation in isolation.

NR: In the same fashion, since Graves et al. showed that
the best generalized linear models for defect prediction are
based on number of changes [26], we isolate the number of
revisions as a predictive variable.

NFIX+NR: We combine the previous two approaches.

B. Previous Defects

This approach relies on a single metric to perform its
prediction. We also describe a more fine-grained variant
exploiting the categories present in defect archives.

BUGFIXES. The bug prediction approach based on previ-
ous defects, proposed by Zimmermann et al. [18], states that
the number of past bug fixes extracted from the repository
is correlated with the number of future fixes. They then
use this metric in the set of metrics with which they
predict future defects. This measure is different from the
metric used in NFIX-ONLY and NFIX+NR: For NFIX,
we perform pattern matching on the commit comments. For
BUGFIXES, we also perform the pattern matching, which in
this case produces a list of potential defects. Using the defect
id, we check whether the bug exists in the bug database, we
retrieve it and we verify the consistency of timestamps (i.e.,
if the bug was reported before being fixed).

Variant: BUG-CATEGORIES. We also use a variant in
which as predictors we use the number of bugs belonging to
five categories, according to severity and priority. The cate-
gories are: All bugs, non trivial bugs (severity>trivial), ma-
jor bugs (severity>major), critical bugs (critical or blocker
severity) and high priority bugs (priority>default).

C. Source Code Metrics

Many approaches in the literature use the CK metrics. We
compare them with additional object-oriented metrics, and
LOC. Table III lists all source code metrics we use.

Type Metric
CK WMC Weighted Method Count
CK DIT Depth of Inheritance Tree
CK RFC Response For Class
CK NOC Number Of Children
CK CBO Coupling Between Objects
CK LCOM Lack of Cohesion in Methods
OO FanIn Number of other classes that reference the class
OO FanOut Number of other classes referenced by the class
OO NOA Number of attributes
OO NOPA Number of public attributes
OO NOPRA Number of private attributes
OO NOAI Number of attributes inherited
OO LOC Number of lines of code
OO NOM Number of methods
OO NOPM Number of public methods
OO NOPRM Number of private methods
OO NOMI Number of methods inherited

Table III
CLASS LEVEL SOURCE CODE METRICS.

CK. Many bug prediction approaches are based on met-
rics, in particular the Chidamber & Kemerer suite [17].

OO. An additional set of object-oriented metrics.
CK+OO. The combination of the two sets of metrics.
LOC. Gyimothy et al. showed that lines of code (LOC)

is one of the best metrics for fault prediction [6]. We treat
it as a separate predictor.



D. Entropy of Changes

Hassan predicts defects using the entropy (or complexity)
of code changes [10]. The idea consists in measuring, over a
time interval, how distributed changes are in a system. The
more spread, the higher is the complexity. The intuition is
that one change affecting one file only is simpler than one
affecting many different files, as the developer who has to
perform the change has to keep track of all of them. Hassan
proposed to use the Shannon Entropy defined as

Hn(P ) = −
nX
k=1

pk ∗ log2 pk (1)

where pk is the probability that the file k changes during
the considered time interval. Figure 5 shows an example
with three files and three time intervals.

Time

File A

File B

File C

t1 (2 weeks) t2 (2 weeks) t3 (2 weeks)

Figure 5. An example of entropy of code changes.

In the fist time interval t1, we have a total of four
changes, and the change frequencies of the files (i.e., their
probability of change) are pA = 2

4 , pB = 1
4 , pC = 1

4 . The
entropy in t1 is therefore H = −(0.5 ∗ log2 0.5 + 0.25 ∗
log2 0.25+0.25∗log2 0.25) = 1. In t2, the entropy is higher:
H = −( 2

7 ∗ log2
2
7 + 1

7 ∗ log2
1
7 + 4

7 ∗ log2
4
7 ) = 1.378.

As in [10], to compute the probability that a file changes,
instead of simply using the number of changes, we take into
account the amount of change by measuring the number of
modified lines (lines added plus deleted) during the time
interval. Hassan defined the Adaptive Sizing Entropy as:

H ′ = −
nX
k=1

pk ∗ logn̄ pk (2)

where n is the number of files in the system and n̄ is
the number of recently modified files. To compute the set
of recently modified files we use previous periods (e.g.,
modified in the last six time intervals). To use the entropy of
code change as a bug predictor, Hassan defined the History
of Complexity Metric (HCM) of a file j as

HCM{a,..,b}(j) =
∑

i∈{a,..,b}

HCPFi(j) (3)

where {a, .., b} is a set of evolution periods and HCPF is:

HCPFi(j) =
{
cij ∗H ′i, j ∈ Fi
0, otherwise (4)

where i is a period with entropy H ′i , Fi is the set of files
modified in the period i and j is a file belonging to Fi.
According to the definition of cij , we test two metrics:

• HCM: cij = 1, every file modified in the considered
period i gets the entropy of the system in the considered
time interval.

• WHCM: cij = pj , each modified file gets the entropy
of the system weighted with the probability of the file
being modified.

Concerning the periods used for computing the History
of Complexity Metric, we use two weeks time intervals.

Variants. We define three further variants based on
HCM, with an additional weight for periods in the past.
In EDHCM (Exponentially Decayed HCM, introduced by
Hassan), entropies for earlier periods of time, i.e., earlier
modifications, have their contribution exponentially reduced
over time, modelling an exponential decay model. Similarly,
LDHCM (Linearly Decayed) and LGDHCM (LoGarithmi-
cally decayed), have their contributions reduced over time
in a respectively linear and logarithmic fashion. Both are
novel. The definition of the variants follows (φ1, φ2 and φ3

are the decay factors):

EDHCM{a,..,b}(j) =
P
i∈{a,..,b}

HCPFi(j)

eφ1∗(|{a,..,b}|−i)
(5)

LDHCM{a,..,b}(j) =
P
i∈{a,..,b}

HCPFi(j)
φ2∗(|{a,..,b}|+1−i) (6)

LGDHCM{a,..,b}(j) =
P
i∈{a,..,b}

HCPFi(j)
φ3∗ln(|{a,..,b}|+1.01−i) (7)

E. Churn of Source Code Metrics

Using churn of source code metrics to predict post release
defects is novel. The intuition is that higher-level metrics
may better model code churn than simple metrics like
addition and deletion of lines of code. We sample the history
of the source code every two weeks and compute the deltas
of source code metrics for each consecutive pair of samples.

For each source code metric, we create a matrix where the
rows are the classes, the columns are the sampled versions,
and each cell is the value of the metric for the given class at
the given version. If a class does not exist in a version, we
indicate that by using a default value of -1. We only consider
the classes which exist at release x for the prediction.

We generate a matrix of deltas, where each cell is the
absolute value of the difference between the values of a
metric –for a class– in two subsequent versions. If the class
does not exist in one or both of the versions (at least one
value is -1), then the delta is also -1.

Figure 6 shows an example of deltas matrix computation
for three classes. The numbers in the squares are metrics;
the numbers in circles, deltas. After computing the deltas
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Figure 6. Computing metrics deltas from sampled versions of a system.

matrices for each source code metric, we compute churn as:

CHU(i) =
C∑
j=1

{
0, deltas(i, j) = −1
PCHU(i, j), otherwise

(8)
PCHU(i, j) = deltas(i, j) (9)

where i is the index of a row in the deltas matrix
(corresponding to a class), C is the number of columns
of the matrix (corresponding to the number of samples
considered), deltas(i, j) is the value of the matrix at
position (i, j) and PCHU stands for partial churn. For
each class, we sum all the cells over the columns –excluding
the ones with the default value of -1. In this fashion we
obtain a set of churns of source code metrics at the class
level, which we use as predictors of post release defects.

Variants. We define several variants of the partial churn of
source code metrics (PCHU): The first one weights more the
frequency of change (i.e., delta > 0) than the actual change
(the delta value). We call it WCHU (weighted churn), using
the following partial churn:

WPCHU(i, j) = 1 + α ∗ deltas(i, j) (10)

where α is the weight factor, set to 0.01 in our experi-
ments. This avoids that a delta of 10 in a metric has the same
impact on the churn as ten deltas of 1. We consider many
small changes more relevant than few big changes. Other
variants are based on weighted churn (WCHU) and take
into account the decay of deltas over time, respectively in
an exponential (EDCHU), linear (LDCHU) and logarithmic
manner (LGDCHU), with these partial churns (φ1, φ2 and
φ3 are the decay factors):

EDPCHU(i, j) = 1+α∗deltas(i,j)
eφ1∗(C−j) (11)

LDPCHU(i, j) = 1+α∗deltas(i,j)
φ2∗(C+1−j) (12)

LGDPCHU(i, j) = 1+α∗deltas(i,j)
φ3∗ln(C+1.01−j) (13)

F. Entropy of Source Code Metrics

In the last bug prediction approach we extend the concept
of code change entropy [10] to the source code metrics listed

in Table III. The idea is to measure the complexity of the
variants of a metric over subsequent sample versions. The
more distributed over multiple classes the variants of the
metric is, the higher the complexity. For example, if in the
system the WMC changed by 100, and only one class is
involved, the entropy is minimum, whereas if 10 classes are
involved with a local change of 10 WMC, then the entropy
is higher. To compute the entropy of source code metrics, we
start from the matrices of deltas computed as for the churn
metrics. We define the entropy, for instance for WMC, for
the column j of the deltas matrix, i.e., the entropy between
two subsequent sampled versions of the system, as:

H ′WMC(j) = −
RX
i=1


0, deltas(i, j) = −1
p(i, j) ∗ logR̄j p(i, j), otherwise

(14)

where R is the number of rows of the matrix, R̄j is the
number of cells of the column j greater than 0 and p(i, j)
is a measure of the frequency of change (viewing frequency
as a measure of probability, similarly to Hassan) of the class
i, for the given source code metric. We define it as:

p(i, j) =
deltas(i, j)PR

k=1


0, deltas(k, j) = −1
deltas(k, j), otherwise

(15)

Equation 14 defines an adaptive sizing entropy, because
we use R̄j for the logarithm, instead of R (number of cells
greater than 0 instead of number of cells). In the example in
Figure 6 the entropy for the first column is −( 40

50 ∗ log2
40
50 +

10
50 ∗ log2

10
50 ) = 0.722, while for the second column it is

−( 10
15 ∗ log2

10
15 + 5

15 ∗ log2
5
15 ) = 0.918.

Given a metric, for example WMC, and a class corre-
sponding to a row i in the deltas matrix, we define the history
of entropy as:

HHWMC(i) =
C∑
j=1

{
0, deltas(k, j) = −1
PHHWMC(i, j), otherwise

(16)
PHHWMC(i, j) = H ′WMC(j) (17)

where PHH stands for partial historical entropy.
Compared to the entropy of changes, the entropy of source

code metrics has the advantage that it is defined for every
considered source code metric. If we consider “lines of
code”, the two metrics are very similar: HCM has the
benefit that it is not sampled, i.e., it captures all changes
recorded in the versioning system, whereas HHLOC , being
sampled, might lose precision. On the other hand, HHLOC

is more precise, as it measures the real number of lines of
code (by parsing the source code), while HCM measures it
from the change log, including comments and whitespace.

Variants. In Equation 17 each class that changes between
two version (delta greater than 0) gets the entire system



entropy. To take into account also how much the class
changed, we define the history of weighted entropy HWH ,
by redefining PHH as:

HWH(i, j) = p(i, j) ∗H ′(j) (18)

We also define three other variants by considering the
decay of the entropy over time, as for the churn metrics,
in an exponential (EDHH), linear (LDHH), and logarith-
mic (LGDHH) fashion. We define their partial historical
entropy as (φ1, φ2 and φ3 are the decay factors):

EDHH(i, j) = H′(j)

eφ1∗(C−j) (19)

LDHH(i, j) = H′(j)
φ2∗(C+1−j) (20)

LGDHH(i, j) = H′(j)
φ3∗ln(C+1.01−j) (21)

From these definitions, we define several prediction mod-
els using several object-oriented metrics: HH, HWH, ED-
HHK, LDHH and LGDHH.

V. RESULTS

In Table IV, we report the results of each approach on
each case study, in terms of explanative power (adjusted
R2), and predictive power (Spearman’s correlation).

We also compute an overall score in the following way:
For each case study, add three to the score if the R2 or
Spearman is within 90% of the best value, 1 if it is between
75–90%, and subtract one when it is less than 50%. We use
this score, rather than an average of the values, to promote
consistency: An approach performing very well on a case
study, but bad on others will be penalized. We use the same
criteria to highlight the results in Table IV: R2 and Spearman
within 90% of the best value are bolded, the ones within 75%
have a dark gray background, while values less than 50% of
the best have a light gray background. Scores of 10 or more
denote good overall performance; they are underlined.

A general observation is the discrepancy between the
R2 score and the Spearman score for entropy approaches
(HCM–LGDHCM): This is because HCM and its variations
are based on a single metric, the number of changes, hence
it explains a comparatively smaller portion of the variance,
despite performing well. Based on the results in the table,
we answer several questions.

What is the overall best performing approach? If we
do not consider the amount of data needed to compute
the metrics and instead compare absolute predictive power,
we can infer the following: The best classes of metrics on
all the data sets are the churn and the entropy of source
code, with WCHU and LDHH in particular scoring most
of the times in the top 90% in prediction, and WCHU
having also a good and stable explanative power. Then
the previous defects approaches, BUGFIXES and BUG-
CAT follow. Next comes the single-version code metrics
CK+OO, followed by the entropy of changes (WHCM) and
change metrics (MOSER).

Approaches based on churn and entropy of source code
metrics have good and stable explanative and predictive
power, better than all the other applied approaches.

What is the best approach, data-wise? If we take
into account the amount of data and computational power
needed, one might argue that downloading and parsing
several versions of the source code is a costly process.
It took several days to download, parse and extract the
metrics for about ninety versions of each software system.
Two more lightweight approaches, which work well in most
of the cases, are based on previous defects (BUGFIXES)
and source code metrics extracted from a single version
(CK+OO). However, approaches based on bug or multiple
versions data have limited usability, as the history of the
system is needed, which might be inaccessible or, for newly
developed systems, not even existent. This problem does not
hold for the source code metrics CK+OO, as only the last
version of the system is necessary to extract them.

Using the source code metrics, CK+OO to predict
bugs has several advantages: They are lightweight to
compute, have good explanative and predictive power
and do not require historical information.

What are the best source code metrics? The CK and
OO metrics fare comparably in predictive power (with the
exception of Mylyn), whereas the OO metrics have the edge
in explanative power. However, the combination of the two
metric sets CK+OO is a considerable improvement over
them separated, as the performance is more homogeneous
across all case studies. In comparison, using lines of code
(LOC) only, even if it is simple, yields a poor predictor, as
its behavior is unstable among systems.

Using the CK and the OO metric sets together is prefer-
able to using them in isolation, as the performances are
more stable across case studies.

Is there an approach based on a single metric with
good and stable performances? We have just seen that
LOC is a predictor of variable accuracy. All approaches
based on a single metric, i.e.,NR, BUGFIXES, NFIX-
ONLY and HCM (and variants) have the same issues: The
results are not stable for all the case studies. However,
among them BUGFIXES is the best one.

Bug prediction approaches based on a single metric are
not stable over the case studies.

What is the best weighting for past metrics? In multi-
version approaches and entropy of changes, weighting has
an impact on explanative and predictive power. Our results
show that the best weighting is linear, as models with
linear decay have better predictive power and better or
comparable explanative power than models with exponential
or logarithmic decay (for entropy of changes, churn and
entropy of source code metrics).

The best weighting for past metrics is the linear one.



Adjusted R2 - Explanative power Spearman correlation - Predictive power
Predictor Eclipse Mylyn Equinox PDE Lucene Score Eclipse Mylyn Equinox PDE Lucene Score

Change metrics (Section IV-A)
MOSER 0.454 0.206 0.596 0.517 0.57 9 0.323 0.284 0.534 0.165 0.238 6
NFIX-ONLY 0.143 0.043 0.421 0.138 0.398 -3 0.288 0.148 0.429 0.113 0.284 -1
NR 0.38 0.128 0.52 0.365 0.487 2 0.364 0.099 0.548 0.245 0.296 5
NFIX+NR 0.383 0.129 0.521 0.365 0.459 2 0.381 0.091 0.567 0.255 0.277 4

Previous defects (Section IV-B)
BF (short for BUGFIXES) 0.487 0.161 0.503 0.539 0.559 5 0.41 0.159 0.492 0.279 0.377 10
BUG-CAT 0.455 0.131 0.469 0.539 0.559 5 0.434 0.131 0.513 0.284 0.353 9

Source code metrics (Section IV-C)
CK+OO 0.419 0.195 0.673 0.634 0.379 8 0.39 0.299 0.453 0.284 0.214 8
CK 0.382 0.115 0.557 0.058 0.368 0 0.377 0.226 0.484 0.256 0.216 4
OO 0.406 0.17 0.619 0.618 0.209 6 0.395 0.297 0.49 0.263 0.214 6
LOC 0.348 0.039 0.408 0.04 0.077 -3 0.38 0.222 0.475 0.25 0.172 2

Entropy of changes (Section IV-D)
HCM 0.366 0.024 0.495 0.13 0.308 -2 0.416 -0.001 0.526 0.244 0.308 5
WHCM 0.373 0.038 0.34 0.165 0.49 -1 0.401 0.076 0.533 0.273 0.288 7
EDHCM 0.209 0.026 0.345 0.253 0.22 -4 0.371 0.07 0.495 0.258 0.306 3
LDHCM 0.161 0.011 0.463 0.267 0.216 -4 0.377 0.064 0.581 0.28 0.275 6
LGDHCM 0.054 0 0.508 0.209 0.141 -3 0.364 0.03 0.562 0.263 0.33 5

Churn of source code metrics (Section IV-E)
CHU 0.445 0.169 0.645 0.628 0.456 8 0.371 0.226 0.51 0.251 0.292 5
WCHU 0.512 0.191 0.645 0.608 0.478 11 0.419 0.279 0.56 0.278 0.285 13
LDCHU 0.557 0.214 0.581 0.616 0.458 11 0.395 0.275 0.563 0.307 0.293 11
EDCHU 0.509 0.227 0.525 0.598 0.467 11 0.362 0.259 0.464 0.294 0.28 6
LGDCHU 0.473 0.095 0.642 0.486 0.493 5 0.442 0.188 0.566 0.189 0.29 7

Entropy of source code metrics (Section IV-F)
HH 0.484 0.199 0.667 0.514 0.433 7 0.405 0.277 0.484 0.266 0.318 9
HWH 0.473 0.146 0.621 0.641 0.484 8 0.425 0.212 0.48 0.266 0.263 5
LDHH 0.531 0.209 0.596 0.522 0.343 8 0.408 0.272 0.53 0.296 0.333 13
EDHH 0.485 0.226 0.469 0.515 0.359 5 0.366 0.273 0.586 0.304 0.337 11
LGDHH 0.479 0.13 0.66 0.447 0.419 4 0.421 0.185 0.492 0.236 0.347 8

Combined approaches
BF+CK+OO 0.492 0.213 0.707 0.649 0.586 13 0.439 0.277 0.547 0.282 0.362 15
BF+WCHU 0.536 0.193 0.645 0.627 0.594 13 0.448 0.265 0.533 0.282 0.31 11
BF+LDHH 0.561 0.217 0.615 0.601 0.592 15 0.422 0.221 0.533 0.305 0.352 12
BF+CK+OO+WCHU 0.559 0.25 0.734 0.661 0.61 15 0.425 0.306 0.524 0.31 0.298 11
BF+CK+OO+LDHH 0.587 0.262 0.73 0.68 0.618 15 0.44 0.291 0.571 0.312 0.377 15
BF+CK+OO+WCHU+LDHH 0.62 0.277 0.754 0.691 0.65 15 0.408 0.326 0.592 0.289 0.341 15

Table IV
EXPLANATIVE AND PREDICTIVE POWER FOR ALL THE APPROACHES.

Are bug fixes extracted from the versioning system a
good approximation of actual bugs? If we compare the
performance of NFIX-ONLY with respect to BUGFIXES
and BUG-CAT, we see that the heuristic searching bugs
from commit comments is a poor approximation of actual
past defects. On the other hand, there is no improvement in
categorizing bugs.

Using string matching on versioning system comments,
without validating it on the bug database, decreases the
accuracy of bug prediction.
Can we go further? One can argue that bug information

is anyways needed to train the model. We investigated
whether adding this metric to our best performing ap-
proaches would yield improvements at a moderate cost.
We tried various combinations of BUGFIXES, CK+OO,
WCHU and LDHH. We display the results in the lower
part of Table IV, and see that this yields an improvement,
as the BUGFIXES+CK+OO approach scores a 15 (instead

of a 10 or an 8), despite being lightweight. The combinations
involving WCHU, exhibit a gain in explanative but not in
predictive power: The Spearman correlation score is worse
for the combinations (11) than for WCHU alone (13).
One combination involving LDHH, BF+CK+OO+LDHH,
yields a gain both in explanative and predictive power (15
for both). The same holds for the combination of all the
approaches (BF+CK+OO+WCHU+LDHH).

Combining bugs and OO metrics improves predictive
power. Adding this data to WCHU improves explana-
tion, but degrades prediction, while adding it to LDHH
improves both explanation and prediction.

VI. THREATS TO VALIDITY

Threats to Construct Validity regard the relationship
between theory and observation, i.e., the measured variables
may not actually measure the conceptual variable. A first
threat concerns the way we link bugs with versioning system



files and subsequently with classes. In fact, all the links that
do not have a bug reference in a commit comment cannot be
found with our approach. Bird et al. studied this problem in
bug databases [27]: They observed that the set of bugs which
are linked to commit comments is not a fair representation
of the full population of bugs. Their analysis of several
software projects showed that there is a systematic bias
which threatens the effectiveness of bug prediction models.
However, this technique represents the state of the art in
linking bugs to versioning system files [18], [24].

Another threat is the noise affecting Bugzilla repositories.
In [28] Antoniol et al. showed that a considerable fraction
of problem reports marked as bugs in Bugzilla (according
to their severity) are indeed “non bugs”, i.e., problems not
related to corrective maintenance. We manually inspected
a statistically significant sample (107) of the Eclipse JDT
Core bugs we linked to CVS files, and found that more than
97% of them were real bugs1. Therefore, the impact of this
threat on our experiments is limited.

Threats to Statistical Conclusion Validity concern the
relationship between the treatment and the outcome. In our
experiments we used the Spearman correlation coefficient
to evaluate the performances of the predictors. All the
correlations are significant at the 0.01 level.

Threats to External Validity concern the generalization
of the findings. We have applied the prediction techniques
to open-source software systems only. There are certainly
differences between open-source and industrial development,
and in particular because some industrial settings enforce
standards of code quality. We minimized this threat by using
parts of Eclipse in our benchmark, a system that while
being open-source has a strong industrial background. A
second threat concerns the language: All considered software
systems are written in Java. Adding non-Java systems to the
benchmark would increase its value, but would introduce
problems since the systems would need to be processed by
different parsers, producing variable results.

The bias between the set of bugs linked to commit com-
ments and the entire population of bugs, that we discussed
above, threatens also the external validity of our approach,
as results obtained on a biased dataset are less generalizable.

To decrease the impact of a specific technology/tool, in
our dataset we included systems developed using differ-
ent versioning systems (CVS and SVN) and different bug
tracking systems (Bugzilla and Jira). Moreover, the software
systems in our benchmark are developed by independent
development teams and emerged from the context of two
unrelated communities (Eclipse and Apache).

VII. CONCLUSION

Bug prediction concerns the resource allocation problem:
Having an accurate estimate of the distribution of bugs

1This is not in contradiction with [28]: Bugs mentioned as fixes in CVS
comments are intuitively more likely to be real bugs, as they got fixed.

across components helps project managers to optimize the
available resources by focusing on the problematic system
parts. Different approaches have been proposed to predict
future defects in software systems, which vary in the data
sources they use and in the systems they were validated on,
i.e., no baseline to compare such approaches exists.

We have introduced a benchmark to allow for common
comparison, which provides all the data needed to apply
several prediction techniques proposed in the literature. Our
dataset, publicly available at http://bug.inf.usi.ch, allows the
reproduction of the experiments reported in this paper and
their comparison with novel defect prediction approaches.

We evaluated a selection of representative approaches
from the literature, some novel approaches we introduced,
and a number of variants. Our results showed that the
best performing techniques are WCHU (Weighted Churn
of source code metrics) and LDHH (Linearly Decayed
Entropy of source code metrics), two novel approaches that
we proposed. They gave consistently good results –often
in the top 90% of the approaches– across all five systems.
As WCHU and LDHH require a large amount of data
and computation, past defects and source code metrics are
lightweight alternatives with overall good performance. Our
results provide evidence that prediction techniques based
on a single metric do not work consistently well across all
systems.
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G. Guéhéneuc, “Is it a bug or an enhancement?: a text-
based approach to classify change requests,” in Proceedings
of CASCON 2008. ACM, 2008, pp. 304–318.

APPENDIX

BUG PREDICTION DATASET

To make the experiments presented in this paper repro-
ducible, we created a website2 where we share our bug
prediction dataset. The dataset is a collection of models and
metrics of five software systems and their histories. The goal
of such a dataset is to allow researchers to compare different
defect prediction approaches and to evaluate whether a new
technique is an improvement over existing ones.

In particular, the dataset contains the data needed to run a
defect prediction technique, and compute its performance by
comparing the prediction with an oracle set, i.e., the number
of post release defects as reported in the bug tracking system.

We designed the dataset to perform defect prediction at
the class level. However, package or subsystem information
can be derived by aggregating class data, since per each class
the dataset specifies the package that contains it.

Table V summarizes the contents of our dataset.

System models as FAMIX MSE files
91 versions of Eclipse JDT Core
97 versions of Eclipse PDE UI
91 versions of Equinox Framework
98 versions of Mylyn
99 versions of Lucene

For each class in each system version:
6 CK metrics
11 object oriented metrics
15 change metrics
Categorized (with severity and priority) past defect counts
Categorized (with severity and priority) post-release defect counts

For each class history (over all the versions):
Churn measures for all CK and object oriented metrics
Entropy measures for all CK and object oriented metrics
Complexity of code change measures
Weighted, linear, exponential and logarithmic variants of churn, en-
tropy and complexity of code change

Table V
CONTENTS OF THE BUG PREDICTION DATASET

On the website the data is available as either CSV files
or MSE3 files (for FAMIX models).

Our bug prediction dataset is not the only one pub-
licly available. Other datasets exist (for example http://
promisedata.org), but none of them provides all the pieces of
information that ours includes: Process measures extracted
from versioning system logs, defect information and source
code metrics for hundreds of system versions. The extensive
set of metrics we provide makes it possible to compute the
churn and entropy of source code metrics, and to compare
a wider set of defect prediction techniques.

2Available at http://bug.inf.usi.ch
3Specs available at http://www.moosetechnology.org/docs/mse
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