
Software Evolution Comprehension: Replay to the Rescue

Lile Hattori, Marco D’Ambros, Michele Lanza
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Mircea Lungu
SCG @ University of Berne, Switzerland

Abstract—Developers often need to find answers to questions
regarding the evolution of a system when working on its code
base. While their information needs require data analysis span-
ning over different repository types, the source code repository
has a pivotal role for program comprehension tasks. However,
the coarse-grained nature of the data stored by commit-based
software configuration management systems often makes it
challenging for a developer to search for an answer.

We present Replay, an Eclipse plug-in that allows one to
explore the change history of a system by capturing the changes
at a finer granularity level than commits, and by replaying the
past changes chronologically inside the integrated development
environment with the source code at hand. We conducted a
controlled experiment to empirically assess whether Replay
outperforms a baseline (SVN client in Eclipse) on helping
developers to answer common questions related to software
evolution. The experiment shows that Replay leads to a
decrease in completion time with respect to a set of software
evolution comprehension tasks.

I. INTRODUCTION

When evolving a code base, during the development or
the maintenance phase, developers keep a mental model
of the system – an internal working representation of the
software under consideration [27]. This individual under-
standing of the system is constantly being updated by the
developer’s interactions with the code and the team, and
by seeking answers to various questions [25], [2], [6], [14].
These questions span multiple areas [24] such as program
comprehension, software evolution, collaborative software
development, and program analysis; therefore, they require a
variety of information sources (e.g., colleagues, code bases,
issue trackers, documentation, communication history), and
multiple tools (e.g., [26], [16], [1], [29]) to fulfill them.

Although there are a number of resources (data and
tools) available to ease the comprehension of a system
and its evolution, the amount of resources actually used
by developers is often limited to talking to colleagues, and
exploring the code. In an exploratory study [18], LaToza et
al. report that: 1) almost all teams have a team historian,
who is the go-to person for questions about the code; 2)
most team members subscribe to the check-in messages to
keep themselves updated with the code evolution, though
many of them expressed dissatisfaction with the lack of detail
provided by their teammates when describing the changes
in commit messages.

We argue that this lack of detail is a more fundamental
problem than poor commit messages: It is related to the

coarse granularity at which changes are checked-in and,
consequently, seen by others. When trying to understand the
evolution of the code, the delta between subsequent changes
can be complex enough to prevent developers from inferring
the design decision behind the changes in the code. Moreover,
large commits can also lead to merge conflicts, duplicated
work and conflicting design decisions [8], [3].

In our previous work [10], [11] we presented Syde, an
Eclipse plug-in that records fine-grained changes in multi-
developers projects by continuously tracking code edits
performed in the Integrated Development Environment (IDE).
In this paper we present Replay [12], an Eclipse plug-in
that allows developers to explore the rich change repository
created by Syde. Developers can search for fine-grained
changes made by a set of people to a set of artifacts and
watch them in the chronological order as originally performed
in the IDE. This counts for a better user experience [20] than
the aggregated form of commit-based Software Configuration
Management (SCM) tools, such as CVS and Subversion.

We present a controlled experiment that we conducted to
assess whether Replay is at least as effective and efficient
as the state of the practice at supporting developers with
their questions related to software evolution. From previous
catalogues [25], [2], [6], [14] we selected a set of questions
that developers ask, and converted them into a set of tasks to
measure both the correctness of the task solutions and their
completion time. The contributions of this paper are:

1) Replay, a toolset to replay and exploit a fine-grained
change repository of a system, thus aiding developers at
answering their questions related to software evolution;

2) a report on the design and operation of a controlled
experiment to compare the performance of Replay with
the baseline tool (SVN client) in performing selected
software evolution comprehension tasks;

3) an analysis of the results, which shows a statistically
significant advantage of Replay over the baseline in time,
and indicates advantages of Replay on correctness.

Structure of the paper. In Section II we review Syde
and its change model to subsequently present Replay. In Sec-
tion III we describe the design and operation of our controlled
experiment. In Section IV we analyze the experiment results
and discuss the threats to validity. In Section V we present
work related to the tool, and to the controlled experiment.
In Section VI we present the concluding remarks.



II. SYDE AND REPLAY

Syde is a client-server application that records fine-grained
information about the evolution of a system developed in a
multi-developer setting [10], [11]. It extends Robbes’ change-
based software evolution model (CBSE) [23] into a multi-
developer context by modeling the evolution of a system as
a set containing sequences of changes, where each sequence
is produced by one developer. A change takes a developer’s
copy of the system from one state to the next by means of
semantic operations. These operations are captured by Syde’s
client, an Eclipse plug-in, triggered at every build action.
Thus, the evolution of a system comprises the combination
of the sequences of changes produced by each individual.

System Representation: Syde models and captures
changes of Java systems. It stores and analyzes constructs
such as classes and methods, instead of files and lines. To
this aim, a system is modeled as an abstract syntax tree
(AST) containing nodes, which represent packages, classes,
methods, and fields. In a multi-developer project, the current
state of a system is different for each developer, as it depends
on the changes each has performed after a checkout. The
current state of a system is therefore represented by keeping
track of one AST per developer.

Change Operations: In CBSE, change operations rep-
resent the evolution of the system instead of file versions. A
change operation is the representation of a change a developer
performs in the workspace, i.e., it is the transition of a
system from one state to the next. Syde captures both atomic
changes and composite change operations (e.g., refactorings
[5]). Atomic changes (e.g., insertion, deletion and change of
the property of a node) are the finest-grained operations on
a system’s AST, and contain all the necessary information
to update the model. By applying a list of atomic changes
in their chronological order, it is possible to generate all the
states of a program’s evolution.

System Architecture: Syde is a client-server application,
in which the server records the change operations, maintains
the current state of a project and publishes information
about current and past activities of the team. The client is a
collection of plug-ins that enriches the Eclipse IDE to track
changes and to show awareness information to developers.

Replay is one of the plug-ins that compose Syde’s client.
Its goal is to allow developers to explore the evolution of
a system by chronologically replaying the changes Syde
collects. Since atomic changes are too fine-grained to be
shown individually, Replay groups them by timestamp, author
and artifact (package or class), i.e., all the changes that
were performed by a developer in a class between two
subsequent builds are grouped together based on the last
build’s timestamp. Within a group there cannot be more than
one change to one artifact, thus we maintain the granularity
of the changes.

Change Group Information: Each change group contains
the following information:

– the set of artifacts that were changed, which can be
package, class, method, or field;

– the type of change for each artifact – changes are
classified as insertion, deletion or change;

– the timestamp of the change, more precisely of the build
in which the changes in this group were captured;

– the author of the changes;
– the SCM revision that was the baseline for the change.

Change Filters: To help developers address different
problems, Replay offers three orthogonal categories of filters
applicable to the changes of a system under analysis:

– Time-based. They filter the changes based on the time
period in which they were performed, specified as a
combination of begin and end time.

– Artifact-based. They focus the replay on a subset of the
system artifacts, i.e., classes or packages.

– Author-based. They focus the replay on the activity of
a subset of the authors in the system. Such a subset can
be a team of developers, or a single person.
Visualizing Changes: Figure 1 presents the main com-

ponents of the Replay plug-in:
– The Replay View (Point 1) lists the changes resulting

from a search. It shows the entity from the group that is
the upper-most node of the AST model of these changes.
The change description refers to the entity shown. The
other pieces of information provided are the timestamp,
author and SCM revision for that group of changes.
Selecting on change in the list determines the code to
be displayed on one of the editors of the user’s choice.

– The Replay Editor (Point 2) shows the source code of the
change selected on the Replay View. It colors different
types of changes with different colors. In the example
from Figure 1, the orange text indicates that there was
a change on the signature of the constructor in class
MainFrame. Alternatively, the user can also switch to
the Compare Editor (Point 3) to view the changes, which
shows the structural and textual comparison between
the change selected on the Replay View and the prior
change.

– The Customized Outline View (Point 4) is a complement
to the information shown in the Replay Editor. It gives
structural information about the highlighted changes. In
the example in Figure 1, it indicates that a parameter was
added in the signature of the constructor MainFrame.

– The Toolbar (Point 5) allows one to (1) choose the way
in which the changes are displayed in the main editor
(the first two icons), (2) filter changes based on criteria
like author, artifact, or time (the next three icons), and
(3) improve tool performance by caching the changes
locally instead of accessing the server for every search
(last icon).



1

2

4

3

5

Figure 1. The main components of the Replay plug-in

To watch the changes replayed in chronological order,
the user can navigate through the change list in the Replay
View and observe the information shown on the Replay (or
the Compare) Editor and in the Outline View. Watching a
development session gives the user access to which classes
were changed, which parts within the classes were changed,
the order in which they were changed, by whom, etc.

III. EXPERIMENTAL DESIGN

We want to quantitatively evaluate the effectiveness and ef-
ficiency of Replay on helping developers to answer questions
related to the evolution of a system.

A. Research Questions and Hypotheses

We raise the following research questions:

RQ1 Does the use of Replay reduce the time for an-
swering software evolution questions compared to
SCM-based tools?

RQ2 Does the use of Replay increase the correctness
of the answers to software evolution questions
compared to SCM-based tools?

RQ3 Does the user’s experience level affect the potential
benefits of using Replay in terms of correctness
and time?

RQ4 Which type of questions can we identify that benefit
most from the use of Replay?

Table I
NULL AND ALTERNATIVE HYPOTHESES

Null Hypotheses Alternative Hypotheses
H10 The tool does not impact the

time required to answer soft.
evolution questions.

H1 The tool impacts the time
required to answer soft.
evolution questions.

H20 The tool does not impact the
correctness of the answers to
soft. evolution questions.

H2 The tool impacts the cor-
rectness of the answers to
soft. evolution questions.

The null and alternative hypotheses associated with the
first two questions are formulated in Table I.

To test the hypotheses H10 and H20 we define a series
of tasks that are to be addressed by the control and the
experimental group. The control group (Eclipse+SVN) uses
an Eclipse installation with default development tools and
Subclipse1 to answer the questions accessing the change
history from SVN. The experimental group (Eclipse+Replay)
uses the same Eclipse installation with default development
tools and Replay to access Syde’s change history. We
maintain a between-subject design, meaning that each subject
is part of either the control or the experimental group.

To answer RQ3 we analyze the data within blocks to
check whether the experience level influences the participants’
performance. For the last question we perform a separate
analysis of correctness and completion time for each task.

1Subclipse provides support for SVN in Eclipse http://subclipse.tigris.org/



Table II
TASKS’ DESCRIPTION AND GOAL

Id Description Goal
1 Imagine that you are joining the project’s team to replace a member. Find out what he was working on, so you

can start from what he left unfinished. Identify the two classes he changed the most in the past days.
Becoming familiar with
someone else’s work

2 You have just started to work on a set of classes, and want to find out whether someone else has recently
changed them before you commit your changes. Identify the methods that someone else has also changed.

Becoming aware of team ac-
tivity

3 You have identified one of the main classes of the system but cannot quite understand it. Look for experts who
can help you by searching who has recently changed it the most.

Finding experts at the class
level of abstraction

4 You are taking over the responsibility of a class and your first task is to refactor the code to improve its design
and readability. You want to start with the most complicated feature, because it will need most of your effort.
From the list below, identify the feature that provoked the largest number of changes.

Relating a feature to code
changes

5 You are given the description of a defect and instructions to reproduce it. Find out the origin of this defect,
when and by whom it was introduced. Propose a fix to it.

Tracking back the introduc-
tion of a defect

6 Before you joined the team the system underwent a major refactoring, which involved the deletion of a class
and restructuring of other classes. Investigate why this refactoring took place.

Understanding the rationale
behind past refactorings

B. Object

The system we chose to be the object of this experiment
is called SpreadSheet. Developed by a team of 4 BSc
students, it is a simple spreadsheet application with support
for basic mathematic formulae. Its development lasted for
6 weeks, and at the end, the project counted 13 packages,
77 classes, 286 methods, totaling 1,882 lines of Java code.
The number of SVN commits was 137, while the number
of recorded Syde changes was 11,661. The choice of this
specific system is constrained by the need of having the
change history, collected from both Syde and SVN, for the
entire development cycle. Thus, it was not possible to choose
an open-source system, nor did we have a team working on
a commercial system at our disposal. This choice implies
some threats to validity discussed in Section IV-G.

C. Task Design

We are interested in evaluating whether Replay outper-
forms a baseline (Subclipse) for assisting developers in
answering comprehension questions related to a system’s
evolution. We considered previous catalogues of questions
[25], [2], [6], [14], selected those that can be answered by
investigating the change history of the system, and created
corresponding tasks. Table II provides a short description
of each task together with its goal. Each task is an adapted
version of a question from previous catalogues.

In the handout distributed to the subjects, the descriptions
of the tasks are integrated in the following hypothetical
scenario: the subject is joining a team to replace a developer
that left. The scenario makes the subjects feel as if they
have become part of the team and are gradually learning the
system while solving the experimental tasks.

D. Subjects

We conducted the experiment with 29 subjects: 5 MSc
students, 22 PhD students, one postdoc, and one professor.
The participant’s average age was 28.85, comprising 10
different nationalities. The MSc students, the postdoc, and
the professor have a software engineering background. The

PhDstudents have diverse backgrounds, such as information
retrieval, human-computer interaction, security, and software
engineering. Participation was on a voluntary basis. None of
the participants had previous experience with Replay.

E. Operation

The operation is composed of several experimental runs.
Each run includes a training session of ca. 15 minutes and
one experimental session. Each training session consists of a
tutorial on the tool usage given by the experimenter, followed
by a hands-on session, where the subjects perform some small
tasks and can ask clarification questions. The experimental
session is composed of six tasks, with time limit as follows:
10 minutes for each of the first four tasks, 20 minutes for
task five, and unlimited time for task six.

The session is conducted by using the subject’s laptop, and
instructions are provided to configure it for the experiment.
The control group had Eclipse and Subclipse installed; a
local SVN server was provided. For the experimental group,
the subjects were asked to install Eclipse and Replay.

There were 7 experimental runs in 3 locations: 1 run with 7
participants at the Univ. of Berne; 1 with 6 participants at the
Univ. of Zurich; 4 with 2 participants, 2 with 1 participant,
and 1 with 6 participants at the Univ. of Lugano.

F. Pilot Studies

To refine the experiment design and make Replay mature
enough to guarantee an operation without technical imped-
iments, we ran 5 pilot studies involving 19 people over
the course of 4 months. Regarding Replay, we put most of
the effort in improving its performance on retrieving the
change history to be comparable to Subclipse’s performance.
Several experimental parameters were adjusted after each
pilot, including the description and quantity of the tasks, the
time limit of each task, the computer configuration, and the
handout. One of the parameters that was carefully evaluated
was the slowdown caused by the tools’ configurations, which
led to the experimental group running Syde’s server locally,
and the control group having access to a local SVN repository.



G. Data Collection

Personal information. Before the experiment, we collected
information about the subject (e.g., age, affiliation) and the
subject’s experience with Java, Eclipse and Subversion.

Timing data. To time the participants, we adopted two
strategies. When the session involved up to two subjects, the
experimenter timed them manually. When the session had
more than two subjects, the experimenter used a timing web
application to time each subject, and also to show them their
remaining time. In both cases, the experimenter notified the
subjects when they went overtime, and allowed them to write
down their findings before going to the next task.

Correctness data. To convert the solutions into quantitative
values, we established a grading system. Each task is worth 1
point, evenly distributed according to the number of correct
answers that must be entered., e.g., if there are 4 correct
answers, each is worth 0.25, while each wrong answer counts
as −0.25. The correct answers were determined by the
experimenter, and double-checked by two other persons.

Participant feedback. The experiment ended with a de-
briefing questionnaire, where the subjects assessed the time
pressure, the difficulty of the tasks and whether they were
realistic. The subjects were also given the opportunity to
write down their opinions about the experiment and the tools.

IV. ANALYSIS AND INTERPRETATION

We performed a preliminary analysis on the subjects’
opinion about the tasks to check for exceptional conditions.

We asked the subjects to indicate how much time pressure
they felt during the experiment from 1 (no pressure) to 5 (too
much pressure). The average time pressure reported is 3.08
(stdev. 0.86) for the control group and 3.50 (stdev. 0.80) for
the experimental group, who felt slightly more time pressure.

We sorted the tasks in increasing order of difficulty
throughout the experiment, which is confirmed by the
subjects’ assessment in Figure 2(a). Although there is a great
difference on the perceived difficulty between control and
experiment groups in tasks 3 and 6, they do not characterize
a high discrepancy in terms of both completion time and
correctness, thus we decided to maintain these tasks in the
analysis. Since task 6 required a subjective answer in the
form of a short essay, it is not included in the statistical test.

The participants felt that the tasks reflect situations that
happen in real development scenario (cf. Figure 2(b)). Task
4 received the lowest grading, especially from the control
group. We believe that this grading is due to the formulation
of the task description rather than the task’s goal.

A. Subject Analysis

We followed the suggestions of Wohlin et al. [30] regarding
the removal of outliers caused by exceptional conditions
before performing our statistical test. One subject from the
control group was unable to finish the experiment in the
allotted time due to lack of experience with Eclipse. One

1!

2!

3!

4!

5!

Task 1! Task 2! Task 3! Task 4! Task 5! Task 6!

Eclipse+SVN! Eclipse+Replay!

(a) Difficulty: 1 - trivial, 2 - simple, 3 - intermediate, 4 - difficult, 5
- impossible

1!

2!

3!

4!

5!

Task 1! Task 2! Task 3! Task 4! Task 5! Task 6!

Eclipse+SVN! Eclipse+Replay!

(b) Realism: 1 - strongly disagree, 2 - disagree, 3 - undecided, 4 -
agree, 5 - strongly agree

Figure 2. Average perceived difficulty and realism of the tasks

subject from the experimental group did not follow the
instructions provided in the handout regarding the tools he
was allowed to use, and used the tools reserved to the control
group instead. One subject from the experimental group did
not understand the concept of fine-grained changes provided
by Replay. His answers clearly showed that he did not use the
tool, but rather answered randomly, characterizing himself
as an outlier both in terms of correctness (low grading) and
time (low completion time). We excluded these three cases
from the statistical analysis.

Table III
SUBJECT DISTRIBUTION

Eclipse+SVN Eclipse+Replay Total
Beginner 7 6 13
Advanced 6 7 13
Total 13 13 26

After removing the outliers, we were left with 26 subjects.
We previously assigned treatments to subjects using ran-
domization and blocking according to their experience level.
We asked the subjects to indicate the number of years of
experience they have in programming in Java, using Eclipse,
and using SVN. The criterium used for the blocking was: A
subject is considered advanced only if he has at least four
years of experience with Java and Eclipse, and at least one
year of experience with SVN. If one of these criteria is not
met, the subject is classified as beginner. As a result of the
random assignment and after the removal of the outliers, we
obtained a fair distribution of subjects, as shown in Table III.



Table IV
DESCRIPTIVE STATISTICS OF THE EXPERIMENT RESULTS

S-W Student’s t-test MWU
Group Mean Diff. Min. Max. Stdev. p-value Levene t df p-value p-value

Time (minutes) Eclipse+SVN 44.75 34.00 54.00 6.20 0.213
Eclipse+Replay 41.61 -6.84% 32.00 53.92 6.11 0.576 0.759 2.222 24 0.036

Correctness (points) Eclipse+SVN 3.94 2.67 5.00 0.65 0.669
Eclipse+Replay 4.44 +12.69% 3.67 5.00 0.53 0.022 0.072

B. Interpretation of the Results

The design of our experiment is a between-subjects with
balanced design, and one independent variable, i.e., the tool.
The choice of the hypothesis test depends on whether the
sample distributions are normal and have equal variances. If it
meets these two requirements, we can choose the parametric
Student’s t-test, otherwise, we should use the nonparametric
Mann-Whitney U test.

We performed the Shapiro-Wilk test of normality, which
only rejected the hypothesis that the experimental sample
for correctness is normal. For completion time, we also
performed the Levene test and verified that the samples
have equal variances. The descriptive statistics related to
correctness and completion time are presented in Table IV.

Since the completion time is normally distributed with
equal variances, we use the Student’s t-test for its analysis.
For correctness we must use the Mann-Whitney U test.

C. Results on Completion Time

We first test the null hypothesis H10, which states that
the use of the tool Replay does not impact the time required
to complete the assigned tasks.

Table IV shows that the experimental (Eclipse+Replay)
group took on average 6.84% less time to complete the tasks
than the control (Eclipse+SVN) group, and that this result
is statistically significant at the 95% confidence interval (p-
value = 0.036 < 0.05 for the t-test). With these results, we
can reject the null hypothesis H10 in favor of the alternative
hypothesis H1, and positively answer RQ1.

Figure 3(a) shows a box plot2 of the total time (in minutes)
spent by the subjects on the first five tasks. As we can see,
the 75th percentile of the experimental group is roughly at
the same level of the 25th percentile of the control group.
This means that 75% of the subjects from the experimental
group completed the tasks before or at about the same time
as 75% of the subjects from the control group.

The variability (or range) of completion time is slightly
higher in the experimental group than in the control group.
One factor that might have influenced this result is that Replay
was unknown to everyone, while most of the subjects had
some experience with SVN. In addition, some subjects spent

2The top of the box represents the 75th percentile, the bottom of the box
the 25th percentile, and the line in the middle the 50th percentile (median).

Ti
m

e 
(m

in
ut

es
)

Eclipse+SVN Eclipse+Replay

(a)

C
or

re
ct

ne
ss

 (p
oi

nt
s)

Eclipse+SVN Eclipse+Replay

(b)

Figure 3. Box plots of completion time and correctness

a long time getting used to Replay while doing the warm up
task, and asked for help when they were struggling with the
tool, while others quickly completed the warm up task, and
seldom asked for help. Therefore, previous experiences of
the subjects of the experimental group with using other tools
(including SVN itself) and their dedication on understanding
Replay before starting the tasks might have resulted in a
higher variability in completion time.

The fine granularity and the large amount of changes that
the experimental group had to look through were common
complaints, which might have influenced the completion time
of the group. However, these “drawbacks” of the Replay tool
did not prevent the experimental group to outperform the
control group in terms of completion time.

D. Results on Correctness

Table IV shows that the experimental group obtained,
on average, a score 12.69% higher than the control group.
However, this result is not statistically significant at the 95%
confidence interval (p-value = 0.072 > 0.05 for MWU test),
but it is at the 90%. We are unable to fully reject the null
hypothesis H20, and partially answer RQ2.

Even though the results are not statistically significant at
the 95% confidence interval, Figure 3(b) shows evidence
that the experimental group had a superior performance than
the control group. The 50th percentile of the experimental



group is at the same level of the 75th percentile of the control
group, i.e., 50% of the subjects from the experimental group
obtained higher (or equivalent) score than 75% of the subjects
from the control group.

Furthermore, parametric tests (e.g., t-test) are more pow-
erful than nonparametric tests (e.g., MWU), meaning that
nonparametric tests need more samples or greater difference
in the values to yield statistically significant results. We argue
that this is the main reason for the MWU test to have retained
the null hypothesis at 0.05 significance level. As a simple
test, we have duplicated the experiment dataset and reran the
MWU test, obtaining a p-value= 0.009.

E. Influence of the Experience Level

We compared the correctness and completion time across
the two levels of experience, i.e., beginner and advanced.
Figure 4 shows that the experimental group outperformed
the control group in both correctness and completion time,
regardless of the experience level. Even though the number of
subjects per experience level is too low to yield statistically
significant results, we draw a couple of observations based
on the box plots.

C
or

re
ct

ne
ss

 (p
oi

nt
s)

Beginner Advanced

Ti
m

e 
(m

in
ut

es
)

Beginner Advanced

Eclipse+SVN
Eclipse+Replay

Figure 4. Beginner versus advanced

An interesting fact is that the variability of the experimental
group was lower than the one from the control group for
the beginners, while the inverse can be observed for the
experts in terms of completion time. Our assumption is that
in the case of beginners, since both Replay and Subclipse are
new to them, the learning curve of Subclipse is steeper than
the one of Replay. For those unfamiliar with Subclipse, we
gave a tutorial on its usage and allowed the subjects to get
used to it before starting to perform the tasks. An interesting
feedback we collected from some experts is that they felt
they were so used to look at the changes the “SVN way”
that it was not easy to adapt to Replay, which hindered their
performance.

The higher variability in completion time observed in the
advanced-experimental group can also be explained by their
efforts to adapt to Replay. In terms of correctness, both
beginners and advanced from the experimental group had
lower variability than their respective from the control group.
A factor we attribute to this result is the coarse granularity
of the information contained in the SVN repository, which
can be the subject of multiple interpretations.

We can answer RQ3 by stating that the users’ experience
level does not affect the potential benefits of using Replay
in terms of correctness. However, the results suggest that the
users’ experience might influence their efficiency.

F. Individual Task Analysis
To identify which type of tasks can benefit most from the

use of Replay (RQ4), we examine the performance of the
two tools per task. Figure 5 shows the average correctness
and completion time for each task.

7.18! 6.68!

9.31!

5.86!

17.62!
18.74!

4.90!
6.25!

2.25!

8.49!

19.74!
18.44!

0	
  

4	
  

8	
  

12	
  

16	
  

20	
  

Task 1! Task 2! Task 3! Task 4! Task 5! Task 6!

Av
er

ag
e 

tim
e 

(m
in

ut
es

)!

Eclipse+SVN! Eclipse+Replay!

(a)

0.77!

0.92!

0.77! 0.77!
0.71!

!"##$
#"%&$

!"##$
#"%&$

#"'#$

#"#$

#"&$

#"($

#"'$

#")$

!"#$

Task 1! Task 2! Task 3! Task 4! Task 5!

Av
er

ag
e 

co
rre

ct
ne

ss
 (p

oi
nt

s)
!

Eclipse+SVN! Eclipse+Replay!

(b)

Figure 5. Average completion time and correctness per task

Task 1 – Becoming familiar with someone else’s work.
The subjects are asked to familiarize with recent changes
made by one developer, and to identify the two classes this de-
veloper worked on the most. The experimental group achieved
an excellent performance, while the control group took more
time and had lower grading. Parnin and DeLine [20] have
observed that when a developer resumes one of his interrupted
tasks, he prefers to see past changes chronologically than in
aggregated form. Our findings complement theirs by showing
a better performance of those seeing the changes made by
others chronologically.



Task 2 – Becoming aware of team activity. The goal of
this task is to identify which methods were recently changed
and by whom. Although we have developed a plug-in that
directly targets awareness [17], Replay can also be used for
this activity. The results show that Replay is slightly more
efficient than the baseline for this task.

Task 3 – Finding experts at the level of abstraction of
classes. In this task, the subjects are asked to identify experts
of a class based on the recent changes it underwent. The
results are very similar to the ones from task 1, and show
that Replay outperforms the baseline for this task.

Task 4 – Relating a feature to code changes. This task
involves identifying the different features inside a class and
identifying the one that has changed the most. While the
experimental group took, on average, more time than the
control group to complete the task, they performed better. A
possible explanation for this result is that while the number
of fine-grained changes was much higher than the number
of commits, it was easier to detect the different features by
following the chronological sequences of changes in Replay,
than by looking at the aggregated results on SVN.

Task 5 – Tracking back the introduction of a defect.
This task was added to the experiment after collecting
suggestions on the pilot study indicating that Replay could
be useful for identifying the change that caused a defect.
However, the control group performed better than the
experimental group both in terms of completion time and
correctness. The results and the feedback collected from
the experimental group indicate that the fine granularity of
changes shown by Replay is counter-productive for this task.

Task 6 – Understanding the rationale behind past
refactorings. The goal is to understand the design decisions
behind a major refactoring performed in the past. Since
this is a task that requires a descriptive answer, only the
quantitative scores of completion time are available. On
average, both groups took similar time to complete the
task, however, Figure 2(a) indicates that the experimental
group struggled to understand the refactoring (the average
difficulty was higher than 4). The essays confirm that the
control group was able to understand better the reasons
behind the refactoring. Similar to task 5, the experimental
group complained that the information provided by Replay
was too fine-grained to allow them to see the “big picture”
of the refactoring.

Summary. For tasks 1 and 3, which needed fine-grained
information about recent changes, Replay was more efficient
and effective than the baseline. For task 4, in which the
chronology of changes was important, Replay showed to
be more effective. When the subjects had to relate recent
changes to authors, Replay’s performance is comparable to
the baseline. At tasks that required looking at information
over a long time span (tasks 5 and 6), the fine-granularity
of Replay prevented the subjects from performing well.

G. Threats to Validity

Internal Validity

Subjects. To reduce the threat that the subjects may not
have been competent enough, we ensured that they had
sufficient skills on the tools used during the experiment. To
lessen the threat that the subjects’ expertise may not have
been fairly distributed, we used randomization and blocking
to assign treatments to subjects.

Tasks. The tasks were designed by the authors of this paper,
and thus may have been biased toward Replay. To mitigate
this threat, we have based the tasks on valid questions that
developers ask, which were reported in previous catalogues.
The tasks might have been too difficult and the allotted
time per task may have been insufficient. To alleviate these
threats, we conducted several pilot runs to fine-tune them.
Furthermore, the task that was classified as too difficult by the
experimental group (task 6) was not designed to be included
on the statistical analysis.

Experimental runs. There were several runs and the differ-
ences among them may have influenced the results. However,
the several pilot runs with different number of participants
allowed us to have a stable and reliable experimental setup.

Training. We provided a training session on Replay to all
subjects of the experimental group, while the subjects from
the control group were assumed to have familiarity with
the baseline tools. To mitigate the fact that lack of proper
training might have influenced the results, we also provided
a training session on Subclipse when a subject from the
control group was unfamiliar with the tool.

External Validity

Subjects. The fact that the subjects of the experiment were
from academia may have limited our ability to generalize the
results to the industrial environment. It is difficult to recruit
practitioners who are willing to dedicate 2 hours of their time
to do an experiment. To mitigate the lack of practitioners,
we assume a relatively high average expertise level of the
26 selected participants. This assumption is sustained by
the subjective assessment of the expertise provided by the
subjects prior to the experiment. They were asked to rank
their perceived knowledge according to the scale: 1–none, 2–
beginner, 3–knowledgeable, 4–advanced, and 5–expert. The
results—Java (avg. 3.65, stdev. 0.93), Eclipse (avg. 3.42, stdev.
0.94), SVN (avg. 3.04, stdev. 1.25)—indicate an average of
knowledgeable subjects.

Tasks. Our choice of tasks may not reflect real questions
related to software evolution. This threat is neutralized by
our reliance on existing catalogues [25], [2], [6], [14], which
were mainly constructed through surveys and interviews with
practitioners, to elaborate the tasks.

Object system. The representativeness of our object system
is an important threat, since it is a small system that was
developed by undergraduate students. Therefore, it may



not reflect the complexity of large-scale industrial systems.
The use of more than one object system may have yielded
different or more reliable results. However, the choice of the
object system was constrained by the need of having the
change history from both Syde and SVN.

V. RELATED WORK

A. Approaches Related to Replay

To our knowledge, Replay is the first tool to support
replaying development sessions in a collaborative environ-
ment. However, other tools support programmers with their
quests. Fritz and Murphy propose a prototype that combines
different information fragments (source code, work items,
change sets, teams, comments, wiki) to support 78 questions
software developers ask about a development project [6]. The
tool Ferret combines four different sources of information
(static, dynamic, evolutionary, and Eclipse PDE) to build a
knowledge base for answering conceptual queries [2]. James
is a knowledge base, composed of IDE interactions and
micro-blogging, to support developers with their quests [9].

Looking at our work in the broader context of software
evolution, there are various lines of research that relate to ours.
In the software evolution analysis context, several approaches
make use of the changes performed to a system over its
lifetime to support its comprehension: Lanza, Gı̂rba et al.,
and Lungu et al. summarize and visualize respectively the
evolution of classes [15], the evolution of class hierarchies
[7], and the evolution of inter-module relationships [19]. In
these works the history is not replayed, but summarized; and
the order in which the changes are performed is lost. In our
work, we specifically focus on replaying the change events
in the order in which they happened.

A few approaches focus on replaying the changes that
happened in a system. Wettel and Lanza visualize the
evolution of the entire system by allowing the user to travel
in time and observe the changes of the system as they are
represented in a 3D city metaphor [28]. Hindle et al. present
an animation of the evolution of the architecture of a system
[13] in the Yarn tool. The animation presents the evolution of
the relationships between the modules of the system. These
approaches allow the animation of the changes, but present
the changes at a high level of abstraction, from which the
code is not accessible.

One major difference between our work and the ones
aforementioned is the level of detail of the data. In most
of the approaches the data is extracted from commit-based
SCM systems, implying that changes between versions can
be arbitrarily complex. An approach that uses fine-grained
change information was proposed by Robbes [22]. Although
he collects fine-grained information from software systems,
Robbes does not use it to support the replaying of the changes,
but he exploits it for other purposes, e.g., to detect and
characterize development sessions [24]. Dig, instead, uses a

change-centric approach to record sequences of refactorings,
and to replay them on other library-based applications [4].

B. Empirical Studies

There are relatively few empirical studies by means of
controlled experiments in software engineering. Further, there
is no controlled experiment that directly relates to ours:
answering developers’ questions related to software evolution.
However, there are a number of controlled experiments related
to software evolution and program comprehension.

Quante evaluates through a controlled experiment the
support provided by dynamic object graphs on answering
a set of program comprehension tasks [21]. Cornelissen et
al. performe a controlled experiment to evaluate the use of
Extravis, an execution trace visualization tool, to answer
program comprehension tasks [1]. Wettel et al. assess the
use of CodeCity to perform program comprehension and
quality assessment tasks [29].

The major difference between these controlled experiments
and ours is that they evaluate tools that visualize data other
than source code (dynamic graphs, execution traces, system
models) to support program comprehension. We evaluate a
tool that allows a developer to investigate the history of the
system by looking directly at its source code.

VI. CONCLUSION

We presented Replay, a tool that allows developers to
explore the evolution history of a system by chronologically
replaying the fine-grained changes collected by Syde. We
argue that Replay can be useful to help developers in finding
answers to common questions they raise during development
and maintenance that are related to the evolution of a system.

We conducted a controlled experiment to evaluate whether
Replay is, at least, as effective and efficient as the state of
the practice at supporting developers with their questions
related to software evolution. The results indicate that Replay
leads to an improvement in both correctness (12.7%) and
completion time (6.8%), with the latter being statistically
significant at 95% confidence interval. As an indication of a
superior performance of the experimental group in terms of
correctness, 50% of this group performed better than 75% of
the control group. In terms of completion time, 75% of the
experimental group was faster than (or equivalent to) 75% of
the control group. These results show that there are benefits
of using Replay over of the state of the practice tools for
most of the tasks included in this empirical evaluation.

The per-task analysis of the results, which provided
a number of insights on the type of tasks our approach
supports best. For tasks that needed fine-grained change
information, or in which the chronological order was
important, Replay outperformed the baseline. However,
when the tasks required a general overview of the changes,
Replay did not perform better than the baseline.



ACKNOWLEDGMENT

We thank Alberto Bacchelli and Richard Wettel for helping
us with the design; the subjects and the participants of the
pilot study; Serge Demeyer, Harald Gall, Oscar Nierstrasz,
Arie van Deursen, Anja Guzzi, Quinten Soetens, and Michael
Würsch for helping us with local organizations. Hattori
is supported by the Swiss Science foundation through the
project “GSync” (SNF Project No. 129496).

REFERENCES

[1] B. Cornelissen, A. Zaidman, and A. van Deursen. A
controlled experiment for program comprehension through
trace visualization. IEEE Trans. on Software Engineering, 99,
2010.

[2] B. de Alwis and G. C. Murphy. Answering conceptual queries
with ferret. In Proceedings of ICSE 2008 (30th Intl. Conf. on
Software Engineering), pages 21–30. ACM Press, 2008.

[3] C. R. B. de Souza, D. Redmiles, and P. Dourish. Breaking the
code, moving between private and public work in collaborative
software development. In Proceedings of GROUP 2003 (Intl.
ACM SIGGROUP Conf. on Supporting Group Work), pages
105–114. ACM Press, 2003.

[4] D. Dig. Automated Upgrading of Component-based Applica-
tions. PhD thesis, University of Illinois at Urbana-Champaign,
2007.

[5] M. Fowler. Refactoring - Improving the Design of Existing
Code. Addison-Wesley, 1999.

[6] T. Fritz and G. C. Murphy. Using information fragments to
answer the questions developers ask. In Proceedings of ICSE
2010 (32nd ACM/IEEE Intl. Conf. on Software Engineering),
pages 175–184. IEE Computer Society, 2010.

[7] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the
evolution of class hierarchies. In Proceedings of CSMR
2005 (9th European Conf. on Software Maintenance and
Reengineering), pages 2–11. IEEE CS Press, 2005.

[8] R. Grinter. Supporting articulation work using software
configuration management systems. Computer Supported
Cooperative Work, 5(4):447–465, 1996.

[9] A. Guzzi, M. Pinzger, and A. van Deursen. Combining micro-
blogging and ide interactions to support developers in their
quests. In Proceedings of ICSM2010 (IEEE Intl. Conf. on
Software Maintenance), pages 1 –5, 2010.

[10] L. Hattori. Enhancing collaboration of multi-developer projects
with synchronous changes. In Proceedings of ICSE 2010 (32nd
ACM/IEEE Intl. Conf. on Software Engineering), Doctoral
Symposium, pages 377–380. IEEE CS Press, 2010.

[11] L. Hattori and M. Lanza. Syde: A tool for collaborative
software development. In Proceedings of ICSE 2010 (32nd
ACM/IEEE Intl. Conf. on Software Engineering), pages 235–
238, 2010.

[12] L. Hattori, M. Lungu, and M. Lanza. Replaying past changes
on multi-developer projects. In Proceedings of IWPSE-EVOL
2010 (Joint 11th Intl. Workshop on Principles of Software
Evolution and 5th ERCIM Workshop on Software Evolution),
pages 13–22, 2010.

[13] A. Hindle, Z. M. Jiang, W. Koleilat, M. W. Godfrey, and R. C.
Holt. Yarn: Animating software evolution. In Proceedings of
VISSOFT 2007 (4th Intl. Workshop on Visualizing Software
for Understanding and Analysis), pages 129–136. IEEE CS
Press, 2007.

[14] A. J. Ko, R. DeLine, and G. Venolia. Information needs
in collocated software development teams. In Proceedings
of ICSE 2007 (29th ACM/IEEE Intl. Conf. on Software
Engineering), pages 344–353. IEEE Computer Society, 2007.

[15] M. Lanza. The evolution matrix: Recovering software evolu-
tion using software visualization techniques. In Proceedings
of IWPSE 2001 (4th Intl. Workshop on Principles of Software
Evolution), pages 37–42. ACM Press, 2001.

[16] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger. Codecrawler —
an information visualization tool for program comprehension.
In Proceedings of ICSE 2005 (27th IEEE Intl. Conf. on
Software Engineering), pages 672–673. ACM Press, 2005.

[17] M. Lanza, L. Hattori, and A. Guzzi. Supporting collaboration
awareness with real-time visualization of development activity.
In Proceedings of CSMR 2010 (14th IEEE European Conf. on
Software Maintenance and Reengineering), pages 207–216.
IEEE CS Press, 2010.

[18] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental
models: a study of developer work habits. In Proceedings of
ICSE 2006 (28th ACM Intl. Conf. on Software Engineering),
pages 492–501. ACM, 2006.

[19] M. Lungu and M. Lanza. Exploring inter-module relationships
in evolving software systems. In Proceedings of CSMR 2007
(11th IEEE European Conf. on Software Maintenance and
Reengineering), pages 91–100. IEEE CS Press, 2007.

[20] C. Parnin and R. DeLine. Evaluating cues for resuming
interrupted programming tasks. In Proceedings of CHI 2010
(28th Intl. Conf. on Human Factors in Computing Systems),
pages 93–102. ACM Press, 2010.

[21] J. Quante. Do dynamic object process graphs support program
understanding? - a controlled experiment. In Proceedings of
ICPC 2008 (16th Intl. Conf. on Program Comprehension),
pages 73–82. IEEE CS Press, 2008.

[22] R. Robbes. Of Change and Software. PhD thesis, University
of Lugano, Switzerland, Dec. 2008.

[23] R. Robbes and M. Lanza. A change-based approach to software
evolution. Electronic Notes in Theoretical Computer Science
(ENTCS), 166:93–109, Jan. 2007.

[24] R. Robbes and M. Lanza. Characterizing and understanding
development sessions. In Proceedings of ICPC 2007 (15th
IEEE Intl. Conf. on Program Comprehension), pages 155–164.
IEEE CS Press, 2007.

[25] J. Sillito, G. C. Murphy, and K. D. Volder. Questions pro-
grammers ask during software evolution tasks. In Proceedings
of FSE-14 (14th Intl. Symp. on Foundations of Software
Engineering), pages 23–34. ACM Press, 2006.

[26] M.-A. D. Storey. Theories, methods and tools in program
comprehension: past, present and future. In Proceedings of
IWPC 2005 (13th Intl. Workshop on Program Comprehension),
pages 181 – 191, May 2005.

[27] A. von Mayrhauser and A. M. Vans. Program comprehension
during software maintenance and evolution. Computer, 28:44–
55, 1995.

[28] R. Wettel and M. Lanza. Visual exploration of large-scale
system evolution. In Proceedings of WCRE 2008 (15th IEEE
Working Conf. on Reverse Engineering), pages 219–228. IEEE
CS Press, 2008.

[29] R. Wettel, M. Lanza, and R. Robbes. Software systems as
cities: A controlled experiment. In Proceedings of ICSE
2011 (33rd Intl. Conf. on Software Engineeering), page to be
published, 2011.

[30] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén. Experimentation in software engineering: an
introduction. Kluwer Academic Publishers, 2000.


