
Software Systems as Cities: A Controlled Experiment

Richard Wettel and Michele Lanza
REVEAL @ Faculty of Informatics

University of Lugano
{richard.wettel,michele.lanza}@usi.ch

Romain Robbes
PLEIAD @ DCC

University of Chile
rrobbes@dcc.uchile.cl

ABSTRACT
Software visualization is a popular program comprehension tech-
nique used in the context of software maintenance, reverse engineer-
ing, and software evolution analysis. While there is a broad range
of software visualization approaches, only few have been empiri-
cally evaluated. This is detrimental to the acceptance of software
visualization in both the academic and the industrial world.

We present a controlled experiment for the empirical evaluation
of a 3D software visualization approach based on a city metaphor
and implemented in a tool called CodeCity. The goal is to provide
experimental evidence of the viability of our approach in the context
of program comprehension by having subjects perform tasks related
to program comprehension. We designed our experiment based on
lessons extracted from the current body of research. We conducted
the experiment in four locations across three countries, involving
41 participants from both academia and industry. The experiment
shows that CodeCity leads to a statistically significant increase in
terms of task correctness and decrease in task completion time. We
detail the experiment we performed, discuss its results and reflect
on the many lessons learned.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance and Enhancement]: Restruc-
turing, reverse engineering, and reengineering

General Terms
Experimentation, Human Factors, Measurement

Keywords
Software visualization, Empirical validation

1. INTRODUCTION
Software visualization is defined by Stasko et al. as “The use

of the crafts of typography, graphic design, animation, and cine-
matography with modern human-computer interaction and com-
puter graphics technology to facilitate both the human understand-
ing and effective use of computer software” [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28 2011, Honolulu, Hawaii
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

It has earned a reputation as an effective program comprehension
technique, and is widely used in the context of software maintenance,
reverse engineering and reengineering [2].

The last decade has witnessed a proliferation of software visual-
ization approaches, aimed at supporting a broad range of software
engineering activities. As a consequence, there is a growing need for
objective assessments of visualization approaches to demonstrate
their effectiveness. Unfortunately, only few software visualization
approaches have been empirically validated so far, which is detri-
mental to the development of the field [2].

One of the reasons behind the shortage of empirical evaluation lies
in the difficulty of performing a controlled experiment for software
visualization. On the one hand, the variety of software visualization
approaches makes it almost impossible to reuse the design of an
experiment from the current body of research. On the other hand, or-
ganizing and conducting a proper controlled experiment is, in itself,
a difficult endeavor, which can fail in many ways: data which does
not support a true hypothesis, conclusions which are not statistically
significant due to insufficient data points, etc.

We present a controlled experiment for the empirical evaluation
of a software visualization approach based on a city metaphor [16].
The aim is to show that our approach, implemented in a tool called
CodeCity, is at least as effective and efficient as the state of the
practice at supporting reverse engineering and program comprehen-
sion activities. We conceived a set of tasks and measured both the
correctness of the task solutions and the task completion time. We
conducted the experiment in four locations across three countries,
with participants from both industry and academia, with a broad
range of experience.

In this paper we make the following two major contributions:

1. we detail the experiment design and its operation, reporting
on a number of lessons learned regarding the many pitfalls
that this type of experiment entails, and

2. we discuss the results of the experiment, which show that
our approach is a viable alternative to existing non-visual
techniques.

Structure of the paper. In Section 2 we describe our software
visualization approach. In Section 3 we present the related work,
followed by a list of desiderata in Section 4, extracted from an
extensive study of the existing body of research. In Section 5 we
describe the design of our experiment and in Section 6 we detail the
experiment’s operational phase. In Section 7 we present how we
collected the data on which we performed the analysis presented
in Section 8. In Section 9 we present the results of the experiment,
followed by a presentation of the threats to validity in Section 10,
and the conclusions in Section 11.

2. CODECITY IN A NUTSHELL
Our approach [16, 15, 19] uses a city metaphor to depict software

systems as three-dimensional cities (see Figure 1), where classes
are buildings and packages are districts.

Figure 1: Representation of a software system in CodeCity

Similar to the 2D polymetric view approach [4], we map a set of
software metrics on the visual properties of artifacts: The Number
Of Methods is mapped on the height of the buildings, the Number Of
Attributes on the base size, and the number of Lines Of Code on the
color of the buildings, from dark gray (low) to intense blue (high).

We also extended our approach to address the visualization of
design problems [19]: Inspired by disease maps we assign vivid
colors to design problems and color the affected artifacts according
to the design problems that characterize them. The resulting visual-
ization is called disharmony map (see Figure 2) and relies on design
problem data computed using Marinescu’s detection strategies [7].

Component
java.awt
NOM: 280
NOA: 88

InputEvent
java.awt.event
NOM: 14
NOA: 21

String
java.lang

NOM: 81
NOA: 7

Calendar
java.utils
NOM: 71
NOA: 81

Figure 2: Example of disharmony map (a part of JDK 1.5)

CodeCity also supports software evolution analysis activities [18],
which for reasons we explain later we did not evaluate.

Tool support. Our approach is implemented in CodeCity [17],
a freely available1 standalone tool programmed in Smalltalk and
depicted in Figure 1. Apart from the main visualization panel, there
is an information panel providing contextual data on the selected
city artifact (e.g., name, metric values, etc.). CodeCity supports a
broad range of facilities to interact, such as inspection or querying,
and navigate the visualization. Although not integrated in an IDE,
CodeCity features unidirectional linking between the visualization
and the source code, i.e., the source code of the software element
represented by a city artifact can be accessed in an editor from the
visualization. CodeCity is customizable: the user can compose a new
view by choosing from a set of metrics and artifact representations.
1http://codecity.inf.usi.ch

3. RELATED WORK
There is a rich body of research on empirical evaluation of in-

formation visualization by means of controlled experiments. To
identify both good practices and commonly occurring mistakes, we
conducted an extensive study of the literature. The study [20] ex-
tends far beyond the scope of this paper; we limit the discussion to
controlled experiments for the evaluation of software visualization.

Storey and Müller performed a controlled experiment [14] to
compare the support of SHriMP and Rigi in solving a number of
program comprehension tasks, both to each other and to a baseline
(i.e., SNIFF+).

Marcus et al. performed a study to test the support provided
by the sv3D visualization tool in answering a set of program com-
prehension questions [6]. The authors compared the performances
obtained by using sv3D to the ones obtained by exploring the source
code in an IDE and a text file containing metrics values.

Lange et al. performed a controlled experiment in which they
evaluated the usefulness of their enriched UML views, by compar-
ing them with traditional UML diagrams [3]. The baseline of the
experiment was composed of a UML tool and a metric analysis tool.

Quante performed a controlled experiment for the evaluation of
dynamic object process graphs in supporting program understanding
[10], using not one, but two subject systems. A statistically signifi-
cant improvement of the experimental group could only be detected
in the case of one of the systems, which shows that relying on solely
one system is unsound.

Cornelissen et al. [1] performed a controlled experiment for the
evaluation of EXTRAVIS, an execution trace visualization tool. The
purpose of the experiment was to evaluate how the availability of
EXTRAVIS influences the correctness and the time spent by the
participants in solving a number of program comprehension tasks.

From the perspective of the experiment’s design, there are two
major differences between our experiment and the related work,
summarized in Table 1.

Experiment Subjects Object system(s)
Academia Industry Classes kLOC

Storey et al. [14] 30 0 17 2

Marcus et al. [6] 24 0 27 42

Lange et al. [3] 100 0 38 ?
39 ?

Quante [10] 25 0 475 43
1,725 160

Cornelissen et al. [1] 20 1 310 57

Wettel et al. [20] 21 20 1,320 93
4,656 454

Table 1: Comparing to the related work

The first is that in our experiment, we have an equal split between
subjects from academia (i.e., 21) and industry (i.e., 20), while the
rest of the experiments have only subjects from academia, with
the exception of Cornelissen et al., who had one single industry
practitioner. While students are convenient subjects, a sample made
up entirely of students might not adequately represent the intended
user population [9].

The second issue regards the fact that the systems used by most
of the experiments are rather small and, thus, not representative for
a realistic work setting. In our experiment the largest of the two
systems has almost half a million lines of code. Moreover, learning
from Quante’s experiment we do not rely on one system only, but
on two.

http://codecity.inf.usi.ch

4. EXPERIMENTAL DESIGN WISH LIST
We conducted a very exhaustive survey of research works dealing

with experimental validation of software engineering, information
visualization, and software visualization approaches. The survey,
which included more than 50 articles and various books, is detailed
in a technical report [20]. From the survey we distilled the following
experimental design wish list, which we kept in mind as we designed
and conducted the experiment:

1. Choose a fair baseline for comparison. If one wants to
provide evidence for the value of an approach the question of
what one compares it to has to be answered unambiguously.

2. Involve participants from industry. Any approach devised
to support practitioners in their work is best evaluated using a
subject sample with a fair share of software practitioners.

3. Take into account the range of experience level of the par-
ticipants. Experience can greatly influence the outcome of
the experiment.

4. Provide a tutorial of the experimental tool to the partici-
pants. The experimental group would require intensive train-
ing to even come close to the skills of the control group
acquired in years of operation. Therefore, a minimal exercis-
ing of the experimental group in using the features required
to solve the tasks is paramount.

5. Find a set of relevant tasks. The tasks should be close in
scope and complexity to real tasks performed by practitioners.

6. Include tasks which may not advantage the tool being
evaluated. This allows the experimenters to actually learn
something during the experiment, including shortcomings of
their approach.

7. Limit the time allowed for solving each task. Allowing
unbounded time for a task to avoid time pressure may lead
participants to spend the entire time allotted for the experi-
ment on solving a single task, as Quante’s experiment [10]
showed.

8. Choose real-world systems. Many experiments in the lit-
erature use small systems, making it hard to generalize the
results for real-world systems.

9. Include more than one subject system in the experimen-
tal design. Quante [10] showed that performing the same
experiment on two different systems can lead to significantly
different results.

10. Provide the same data to all participants. The observed
effect of the experiment is more likely attributable to the
independent variables if this guideline is followed.

11. Report results on individual tasks. This allows for a more
precise and in-depth analysis of the strengths and weaknesses
of an approach.

12. Provide all the details needed to make the experiment
replicable. Di Penta et al. discuss the benefits of replicability
and present a set of guidelines that enable the replication of
the experiment [9].

5. EXPERIMENTAL DESIGN
The purpose of our experiment is to quantitatively evaluate the

effectiveness and efficiency of our approach when compared to
state-of-the-practice exploration approaches.

5.1 Research Questions & Hypotheses
The research questions underlying our experiment are:

Q1 : Does the use of CodeCity increase the correctness of the
solutions to program comprehension tasks, compared to non-
visual exploration tools, regardless of the object system’s
size?

Q2 : Does the use of CodeCity reduce the time needed to solve
program comprehension tasks, compared to non-visual explo-
ration tools, regardless of the object system’s size?

Q3 : Which are the task types for which using CodeCity over non-
visual exploration tools makes a difference in either correct-
ness or completion time?

Q4 : Do the potential benefits of using CodeCity in terms of cor-
rectness and time depend on the user’s background (i.e., aca-
demic versus industry practitioner)?

Q5 : Do the potential benefits of using CodeCity in terms of cor-
rectness and time depend on the user’s experience level (i.e.,
novice versus advanced)?

The null hypotheses and alternative hypotheses corresponding to
the first two research questions are synthesized in Table 2.

Null hypothesis Alternative hypothesis

H10 : The tool does not impact
the correctness of the solu-
tions to program comprehen-
sion tasks.

H1 : The tool impacts the correct-
ness of the solutions to pro-
gram comprehension tasks.

H20 : The tool does not impact the
time required to complete pro-
gram comprehension tasks.

H2 : The tool impacts the time re-
quired to complete program
comprehension tasks.

Table 2: Null and alternative hypotheses

For the third question, we perform a separate analysis of correct-
ness and completion time for each of the tasks. For the last two
questions we analyze the data within blocks, which we however
do not discuss in this paper due to space reasons. We refer the
interested reader to our detailed technical report [20].

5.2 Dependent and Independent Variables
The purpose of the experiment is to show whether CodeCity’s

3D visualizations provide better support to software practitioners in
solving program comprehension tasks than state-of-the-practice ex-
ploration tools. Additionally, we are interested in how well CodeCity
performs compared to the baseline when analyzing systems of differ-
ent magnitudes. Consequently, our experiment has two independent
variables: the tool used to solve the tasks and the object system
size. The tool variable has two levels, i.e., CodeCity and a baseline,
chosen based on the criteria described in Section 5.2.1. The object
system size has two levels, i.e., medium and large, because visual-
ization starts to become useful only when the analyzed system has a
reasonable size. The object systems chosen to represent these two
treatments are presented in Section 5.2.2.

Similarly to other empirical evaluations of software visualization
approaches [3, 10, 1], the dependent variables of our experiment
are correctness of the task solution (i.e., a measure of effectiveness)
and completion time (i.e., measure of efficiency). The design of our
experiment is a between-subjects design, i.e., a subject is part of
either the control group or of the experimental group.

5.2.1 Finding a Baseline
There is a subtle interdependency between the baseline and the

set of tasks for the experiment. In an ideal world, we would have
devised tasks for each of the three contexts in which we applied
our approach: software understanding, evolution analysis, and de-
sign quality assessment. Instead, we had to settle for a reasonable
compromise. We looked for two characteristics in an appropriate
baseline: data & feature compatibility with CodeCity and recogni-
tion from the community (i.e., a state-of-the-practice tool).

Unfortunately we could not find a single tool satisfying both
criteria. To allow a fair comparison, without having to limit the
task range, we opted to build a baseline from several tools. The
baseline needed to provide exploration and querying functionality,
support for presenting at least the most important software metrics,
support for design problems exploration, and if possible support for
evolutionary analysis.

In spite of the many existing software analysis and visualization
approaches, software understanding is still mainly performed at the
source code level. Since the most common source code exploration
tools are integrated development environments (IDEs), we chose
Eclipse, a popular IDE in both academia and industry, which rep-
resents the current state-of-the-practice. The next step was finding
support for exploring meta-data, such as software metrics and design
problem data, since they were not available in Eclipse. We looked
for a convenient Eclipse plugin for metrics or even an external met-
rics tool, but could not find one that fit our requirements (including
support for user defined metrics). Since we did not want to confer
an unfair data advantage to the subjects in the experimental group,
we chose to provide the control group with tables containing the
metrics and design problem data, and the popular Excel spreadsheet
application for exploring the data.

Finally, due to Eclipse’s lack of support for multiple versions,
we decided to exclude the evolution analysis from our evaluation,
although we consider it one of the strong points of our approach.
Providing the users with several projects in Eclipse representing
different versions of the same system, with no relation among them
(or even worse, with just a versioning repository), would have been
unfair.

5.2.2 Object Systems
We chose two Java systems, both large enough to potentially

benefit from visualization, yet of different size, so that we can
reason about this independent variable. The smaller of the two
systems is FindBugs2, a tool using static analysis to find bugs in
Java code, developed as an academic project at the University of
Maryland, while the larger system is Azureus3, a popular P2P file
sharing client and one of the most active open-source projects hosted
at SourceForge. In Table 3, we present the main characteristics of
the two systems related to the tasks of the experiment.

System size
Medium Large

Name FindBugs Azureus
Lines of code 93’310 454’387
Packages 53 520
Classes 1’320 4’656
God classes 62 111
Brain classes 9 55
Data classes 67 256

Table 3: The two object systems

2http://findbugs.sourceforge.net
3http://azureus.sourceforge.net

5.3 Controlled Variables
We identified two factors that could have an influence on the sub-

jects’ performance, i.e., their background and experience level. The
background represents the working context of a subject, which we
divided into industry and academy. The second factor is experience
level, which represents the domain expertise gained by each of the
participants, divided into beginner and advanced. For academia,
subjects below a PhD were considered beginners, while researchers
(i.e., PhD students, post-docs and professors) were considered ad-
vanced. For industry, we considered that participants with up to
three years of experience were beginners, and the rest advanced.

We used a randomized block design, with background and experi-
ence level as blocking factors. We assigned each participant—based
on personal information collected before the experiment—to one
of the four categories (i.e., academy-beginner, academy-advanced,
industry-beginner, and industry-advanced). We then randomly as-
signed one of the four treatments (i.e., combinations of tool and
system size) to the participants in each category.

5.4 Treatments
By combining the two levels of each of the two independent

variables we obtain four treatments, illustrated in Table 4.

Tool Azureus Findbugs Treatment Description

CodeCity T1 T2 CodeCity installation with a loaded model
of the system to be analyzed, and the source
code of the object system, accessible from
the visualizations.

Ecl+Exl T3 T4 Eclipse installation with default develop-
ment tools, an Eclipse workspace contain-
ing a project with the entire source code of
the object system, an Excel installation, and
a sheet containing all the metrics and design
problem data required for solving the tasks
and available to the experimental groups.

Table 4: Treatments

We provided the treatments as virtual images for VirtualBox4,
which was the only piece of software required to be installed by the
participants. Each virtual image contained only the necessary pieces
of software (i.e., either CodeCity or Eclipse+Excel), installed on a
Windows XP SP2 operating system.

5.5 Tasks
Our approach provides aid in comprehension tasks supporting

adaptive and perfective maintenance. We tried to use the previously-
defined maintenance task definition frameworks by Pacione et al.
[8] and by Sillito et al. [12] to design the tasks of our evaluation.
However, both frameworks proved ill-suited. Since CodeCity relies
exclusively on static information extracted from the source code, it
was not realistic to map our tasks over Pacione’s model, which is
biased towards dynamic information visualization. Sillito’s well-
known set of questions asked by developers, although partially
compatible with our tasks, refers to developers exploring source
code only. Our approach supports software architects, designers,
quality-assurance engineers, and project managers, in addition to
developers. These additional roles assess systems at higher levels of
abstraction not covered by Sillito’s framework.

We decided to use these works as inspirations and defined our own
set of tasks, detailed in Table 5, dealing with various maintenance
concerns and split into program comprehension (A) and design
quality assessment (B).

4http://www.virtualbox.org

http://findbugs.sourceforge.net
http://azureus.sourceforge.net
http://www.virtualbox.org

Id Task Concern

A1 Description. Locate all the unit test classes of the system and identify the convention (or lack therof) used by the developers to organize the tests.
Rationale. Test classes are typically defined in packages according to a project-specific convention. Before integrating their work in the system, developers
need to understand how the test classes are organized. Software architects design the high-level structure of the system (which may include the convention
by which test classes are organized), while quality assurance engineers monitor the consistency of applying these rules in the system.

Structural
understanding

A2.1 Description. Look for the term T1 in the names of classes and their attributes and methods, and describe the spread of these classes in the system.
Rationale. Assessing how domain knowledge is encapsulated in source code is important in several scenarios. To understand a system they are not familiar
with, developers often start by locating familiar domain concepts in the source code. Maintainers use concept location on terms extracted from change
requests to identify where changes need to be performed in the system. Software architects want to maintain a consistent mapping between the static
structure and the domain knowledge. Each of these tasks starts with locating a term or set of terms in the system and assess its dispersion.

Concept
location

A2.2 Description. Look for the term T2 in the names of classes and their attributes and methods, and describe the spread of these classes in the system.
Rationale. Same as for task A2.1. However, the term T2 was chosen such that it had a different type of spread than T1.

Concept
location

A3 Description. Evaluate the change impact of class C by considering its caller classes (classes invoking any of its methods). The assessment is done in terms
of both intensity (number of potentially affected classes) and dispersion (how these classes are distributed in the package structure).
Rationale. Impact analysis allows one to estimate how a change to a part of the system impacts the rest of the system. Although extensively used in
maintenance activities, impact analysis may also be performed by developers when estimating the effort needed to perform a change. It also gives an idea
of the quality of the system: A part of the system which requires a large effort to change may be a good candidate for refactoring.

A4.1 Description. Find the three classes with the highest number of methods (NOM) in the system.
Rationale. Classes in object-oriented systems ideally encapsulate one single responsibility. Since methods are the class’s unit of functionality, the number
of methods metric is a measure of the amount of functionality of a class. Classes with an exceptionally large number of methods make good candidates for
refactoring (e.g., split class), and therefore are of interest to practitioners involved in either maintenance activities or quality assurance.

Metric-
based
analysis

A4.2 Description. Find the three classes with the highest average number of lines of code per method in the system.
Rationale. It is difficult to prioritize candidates for refactoring from a list of large classes. In the absence of other criteria, the number and complexity of
methods can be used as a measure of the amount of functionality for solving this problem related to maintenance and quality assurance.

Metric-
based
analysis

B1.1 Description. Identify the package with the highest percentage of god classes in the system.
Rationale. God classes are classes that tend to incorporate an overly large amount of intelligence. Their size and complexity often make them a maintainer’s
nightmare. Keeping these potentially problematic classes under control is important. By maintaining the ratio of god classes in packages to a minimum, the
quality assurance engineer keeps this problem manageable. For a project manager, in the context of the software process, packages represent work units
assigned to the developers. Assessing the magnitude of this problem allows him to take informed decisions in assigning resources.

Focused
design
assessment

B1.2 Description. Identify the god class containing the largest number of methods in the system.
Rationale. It is difficult to prioritize candidates for refactoring from a list of god classes. In the absence of other criteria (e.g., the stability of a god class
over its evolution), the number of methods can be used as a measure of the amount of functionality for solving this problem related to maintenance and
quality assurance.

Focused
design
assessment

B2.1 Description. Identify the dominant class-level design problem (the design problem that affects the largest number of classes) in the system.
Rationale. God class is only one of the design problems that can affect a class. A similar design problem is the brain class, which accumulates an excessive
amount of intelligence, usually in the form of brain methods (i.e., methods that tend to centralize the intelligence of their containing class). Finally, data
classes are just “dumb” data holders without complex functionality, but with other classes strongly relying on them. Gaining a “big picture” of the design
problems in the system would benefit maintainers, quality assurance engineers, and project managers.

Holistic
design
assessment

B2.2 Description. Write an overview of the class-level design problems in the system. Describe your most interesting or unexpected observations.
Rationale. The rationale and targeted user roles are the same as for task B2.1. However, while the previous one gives an overview of design problems in
figures, this task provides qualitative details and has the potential to reveal the types of additional insights obtained with visualization over raw data.

Holistic
design
assessment

Table 5: Tasks

6. OPERATION

Pilot Experiment

2009 2010
FebruaryJanuaryDecemberNovember

14 28 18 22 24 252 9 21 2818 24 25

1
Lugano

Bologna

Antwerp

Bern

April
14

..

5
6

1 1
3

3 1
1 1 1

1
1

5 8

2 6
1 1

1
1 1

R
R R

4 1
6

R

Training session

n n subjects with CodeCity (experimental)

Legend:
followed by an experimental session with

m subjects with Eclipse+Excel (control)
remote, self-controlled sessionR

m

Figure 3: The timeline of the experiment

The operation covered the period Nov 2009–Apr 2010 and was
divided in two phases: the pilot and the experiment. Figure 3
shows the timeline of the operation. The operation is composed of a
series of experimental runs; each run consists of a one hour training
session, followed by one or more experimental sessions of up to two
hours. A training session consists of a talk in which the experimenter
presents the approach, concluded with a CodeCity demonstration.

During the experimental session(s), the subjects solve the tasks
with the assigned tool on the assigned object system, under the
experimenter’s observation. The numbers in Figure 3 reflect only
the participants whose data points were taken into account during
the analysis, and not those excluded from it, which we discuss later.

6.1 The Pilot Study
We conducted a pilot study with Master students of the University

of Lugano enrolled in a course on Software Design; improving
the questionnaire and solving problems as they emerged required
several iterations. We organized a joint training session, followed
by three experimental sessions, each one week apart. Before the
first session we conducted the experiment with a researcher from
our group, with extensive experience with Eclipse, to make sure the
tasks for the control group were doable in the allotted time. We did
not include any of these data points in the analysis.

6.2 Experimental Runs
At this point, we were confident enough to start our experiment.

We performed the following experimental runs:
Bologna I. 8 professionals with 4–10 years of experience.
Bologna II. 9 professionals with 7–20 years of experience.
Lugano I. 1 researcher/development leader of a small company.
Lugano II & III. 5 practioners with 10+ years of experience.
Antwerp. 3 Ph.D. and 8 MSc students.
Bern. 2 consultants, 1 professor, 7 Ph.D. and 1 MSc student.

7. DATA COLLECTION
We collected data continuously—before, during, and after the

experiment.

7.1 Personal Information
Before the experiment, we collected both personal information

(e.g., gender, age, nationality) and professional data (e.g., job posi-
tion, experience with object-oriented programming, Java, Eclipse,
and reverse engineering) by means of an online questionnaire, to be
found in [20].

7.2 Timing Data
To time participants accurately, we developed our own timing

web application in Smalltalk. During the experimental sessions, the
timing application would run on the experimenter’s computer and
project the current time.

The displayed time was used as common reference by the partici-
pants whenever they were required in the questionnaire to log the
time. In addition, the application displayed, for each participant, the
name, current task, and the remaining time allotted for the task.

The subjects were asked to announce to the experimenter every
time they logged the time, so that the experimenter could reset
their personal timer by clicking on the hyperlink marked with the
name of the subject. Whenever a subject was unable to finish a
task in the allotted time (10 minutes for each task), the application
would display the message “overtime” beside the name, and the
experimenter would ask the subject to immediately pass to the next
task, before resetting the timer.

7.3 Correctness Data
To convert the collected task solutions into quantitative informa-

tion, we needed an oracle, which would provide both the set of
correct answers and the grading scheme for each task. Having two
object systems and two data sources (source code for the control
group and a model of the system for the experimental group), led
to four oracle sets. To build them, two of the authors and a third
experimenter solved the tasks with each treatment and designed the
grading scheme for each task. In addition, for the two experimental
treatments, we computed the results using queries on the model of
the object system, to make sure that we were not missing any detail
because of particularities of the visual presentation (e.g., occlusion,
too small buildings, etc.). Eventually, we discussed the divergences
and merged our solutions.

Finally, we needed to grade the solution of the subjects. We
employed blind marking to rule out bias; when grading a solution
the experimenter does not know whether the subject that provided
the solution has used an experimental or a control treatment. For
this, one of the authors created four code names for the groups and
created a mapping between groups and code names, known only
to him. Then he provided the other two experimenters with the
encoded data, along with the encoded corresponding oracle, which
allowed them to perform blind grading. In addition, the author who
encoded the data performed his grading unblinded. Eventually, the
authors discussed the differences and converged towards the final
grading. The minimum grade was 0, while the maximum was 8.

7.4 Participants’ Feedback
The questionnaire handout ends with a debriefing section, in

which the participants are asked to assess the level of difficulty for
each task and the overall time pressure, to give us feedback which
could potentially help us improve the experiment, and optionally, to
share with us any interesting insights they encountered during the
analysis.

8. DATA ANALYSIS

8.1 Preliminary Data Analysis
We observed an exceptional condition related to task A4.2, which

had the highest discrepancy in time and correctness between control
and experimental groups. The data points showed that the experi-
mental group was not able to solve this task, while the control group
was quite successful at solving it. The experimental group had an
average of 0.06, with 19 null scores (out of 22), and most subjects
used up the entire allotted time (i.e., ceiling effect). The control
group had an average of 0.86 with 15 perfect scores (out of 19) and
most subjects finished in roughly half the allotted time. The subjects
perceived its difficulty accordingly: In the debriefing questionnaire,
experimental subjects graded task A4.2 as “impossible”, while the
control group described it as “simple”, as shown in Figure 4.

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

7 7 5 1 2 0 2 4 8 1
7 10 12 11 7 0 2 11 9 4
3 4 3 5 11 3 6 5 3 6
4 0 1 4 1 8 9 1 1 8
0 0 0 0 0 10 2 0 0 2

0
3
6
9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

3 1 1 1 9 4 1 5 1 0
6 10 8 2 7 9 7 6 6 0
8 8 10 7 3 4 5 8 10 6
2 0 0 5 0 2 4 0 1 8
0 0 0 4 0 0 2 0 1 5

0
3
6
9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

tool = CodeCity

tool = Ecl+Excl

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

7 7 5 1 2 0 2 4 8 1
7 10 12 11 7 0 2 11 9 4
3 4 3 5 11 3 6 5 3 6
4 0 1 4 1 8 9 1 1 8
0 0 0 0 0 10 2 0 0 2

0
3
6
9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

3 1 1 1 9 4 1 5 1 0
6 10 8 2 7 9 7 6 6 0
8 8 10 7 3 4 5 8 10 6
2 0 0 5 0 2 4 0 1 8
0 0 0 4 0 0 2 0 1 5

0
3
6
9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

tool = CodeCity

tool = Ecl+Excl

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

7 7 5 1 2 0 2 4 8 1
7 10 12 11 7 0 2 11 9 4
3 4 3 5 11 3 6 5 3 6
4 0 1 4 1 8 9 1 1 8
0 0 0 0 0 10 2 0 0 2

0
3
6
9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

3 1 1 1 9 4 1 5 1 0
6 10 8 2 7 9 7 6 6 0
8 8 10 7 3 4 5 8 10 6
2 0 0 5 0 2 4 0 1 8
0 0 0 4 0 0 2 0 1 5

0
3
6
9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

tool = CodeCity

tool = Ecl+Excl

Legend:

Ecl&Exl

CodeCity

Figure 4: Histograms of perceived difficulty per task

The reason is that we underestimated the knowledge of CodeCity
required to perform this task. Solving this task with our tool implies
a deep knowledge of CodeCity’s customization features, and of the
underlying Smalltalk programming language: the only subject who
managed to solve the task in the experimental group is a Smalltalk
expert. These were unreasonable requirements to expect from the
experimental subjects, who were not trained to use such features. To
eliminate this unusually large discrepancy between the two groups,
we excluded the task from the analysis.

8.2 Outlier Analysis
Before performing our statistical test, we followed the sugges-

tion of Wohlin et al. [21] regarding the removal of outliers caused
by exceptional conditions, to allow us to draw valid conclusions
from the data. During the Bologna I experimental run, one of the
participants assigned with an experimental treatment experienced
serious performance slowdowns due to the low performance of his
computer. Although this participant was not the only one reporting
performance slowdowns, he was by far the slowest as measured
by the completion time and, since this represented an exceptional
condition, we excluded his data from the analysis. Another par-
ticipant got assigned to an Ecl+Exl treatment, although he did not
have any experience with Eclipse, but with another IDE. For this
reason, this subject took more time in the first tasks than the others,
because of his lack of experience with Eclipse. Since we did not
want to compromise the analysis by disfavoring any of the groups
(i.e., this data point provided the highest completion time and would
have biased the analysis by disadvantaging the control groups), we
excluded also this data point from the analysis.

During the Bologna II run, two participants had compatibility
problems with the virtualization software installed on their machines.
Eventually they were borrowed our two replacement machines, but
due to the meeting room’s tight schedule, we were not able to wait
for them to finish the experiment. We decided to exclude these two
data points from our analysis.

8.3 Subject Analysis
After the pilot study involving nine participants, we conducted

the experiment with a total of 45 participants in several runs. After
removing four data points during the outlier analysis, we were left
with 41 subjects, of which 20 industry practitioners (all advanced),
and 21 from academia (of which 9 beginners and 12 advanced). For
each of the 4 treatments, we have 8–12 data points and a fair subject
distribution within the remaining three blocks, as shown in Table 6.

Treatment
T1 T2 T3 T4 Total

Block
Academia Beginner 2 3 2 2 9

Advanced 2 2 3 5 12

Industry Beginner 0 0 0 0 0
Advanced 6 7 3 4 20

Total 10 12 8 11 41

Table 6: Subject distribution

Moreover, the random assignments of treatment within blocks
led to a balanced distribution of the subjects’ expertise among treat-
ments, as we see in Figure 5.

Experience Level
CodeCity

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 1 0
0 3 5 10
5 4 10 7
9 12 6 4
8 3 0 1

0
3
6
9

12
15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

Experience Level
Eclipse+Excel

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 0 0
0 0 0 7
2 2 8 7

12 13 10 4
5 4 1 1

0
3
6
9

12
15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

tool = CodeCity

tool = Ecl+Excl

Legend:

Legend:

Experience Level
CodeCity

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 1 0
0 3 5 10
5 4 10 7
9 12 6 4
8 3 0 1

0
3
6
9

12
15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

Experience Level
Eclipse+Excel

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 0 0
0 0 0 7
2 2 8 7

12 13 10 4
5 4 1 1

0
3
6
9

12
15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

tool = CodeCity

tool = Ecl+Excl

Legend:

Legend:
CodeCity

Ecl&Exl

Figure 5: Subjects’ expertise

While some of the subjects assigned to CodeCity have little or
no experience with Eclipse, every subject assigned to Ecl+Exl is at
least knowledgeable in using this IDE.

9. RESULTS
Based on the design of our experiment, i.e., a between-subjects,

unbalanced (i.e., implying unequal sample sizes) design with two
independent variables (tool and system size), the suitable paramet-
ric test for hypothesis testing is a two-way Analysis Of Variance
(ANOVA). We performed the test for correctness and completion
time using the SPSS statistical package. Before the analysis, we
ensured that our data met the test’s assumptions:

1. Independence of observations. This assumption is implicitly
met through the choice of a between-subjects design.

2. Homogeneity of variances of the dependent variables. We
tested our data for homogeneity of both correctness and com-
pletion time, using Levene’s test [5] and in both cases the
assumption was met.

3. Normality of the dependent variable across levels of the in-
dependent variables. We tested the normality of correctness
and completion time across the two levels of tool and object
system size using the Shapiro-Wilk test for normality [11],
and also this assumption was met in all the cases.

We chose a significance level of .05 (α = .05), which corresponds
to a 95% confidence interval. The statistics related to correctness
and completion time are presented in Table 7.

9.1 Analysis Results on Correctness
Interaction effect between tool and system size on correct-

ness. It is important that there is no interaction between the two
factors, which could have affected the correctness. The interaction
effect of tool and system size on correctness was not significant,
F (1, 37) = .034, p = .862. The data shows no evidence that the
variation in correctness between CodeCity and Ecl+Exl depends on
the size of the system, which strengthens any observed effect of the
tool factor on the correctness.

The effect of tool on correctness. There was a significant main
effect of the tool on the correctness of the solutions, F (1, 37) =
14.722, p = .001, indicating that the mean correctness score ob-
tained by CodeCity users was significantly higher than the one for
Ecl+Exl users, regardless of the size of the object system.

Overall, there was an increase in correctness of 24.26% for
CodeCity users (M = 5.968, SD = 1.294) over Ecl+Exl users
(M = 4.803, SD = 1.349). In the case of the medium size
system, there was a 23.27% increase in correctness of CodeCity
users (M = 6.733, SD = .959) over Ecl+Exl users (M = 5.462,
SD = 1.147), while in the case of the large size system, the in-
crease in correctness was 29.62% for CodeCity users (M = 5.050,
SD = 1.031) over Ecl+Exl users (M = 3.896, SD = 1.085).
The data shows that the increase in correctness for CodeCity over
Ecl+Exl was higher for the larger system.

The effect of system size on correctness. Although not the ob-
ject of the experiment, an expected significant main effect of system
size on the correctness of the solutions was observed, F (1, 37) =
26.453, p < .001, indicating that the correctness score was sig-
nificantly higher for users performing the analysis on the medium
size system than for users performing the analysis on the large size
system, regardless of the tool they used to solve the tasks.

The main effect of both tool and object system size on correctness
and the lack of the effect of interaction between tool and object
system size on correctness are illustrated in Figure 6, as well as the
correctness box plots for the four treatments.

Object system size
LargeMedium

C
or

re
ct

ne
ss

7 .00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

5.05

6.73

3.90

5.46

CodeCity
Ecl+Exl
Tool

time

Page 4

Object system size
LargeMedium

C
or

re
ct

ne
ss

8 .00

7.00

6.00

5.00

4.00

3.00

2.00

CodeCity
Ecl+Exl
Tool

EXAMINE VARIABLES=time BY Syssize BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 7

Figure 6: Means and box plots for correctness

9.2 Analysis Results on Completion Time
Interaction effect between tool and system size on completion

time. Similarly, it is important that there is no interaction between
the two factors, which could have affected the completion time. The
interaction effect of tool and system size on completion time was
not significant, F (1, 37) = .057, p = .813. The data shows no
evidence that the variation in completion time between CodeCity
and Ecl+Exl depends on the size of the system, which strengthens
any observed effect of the tool factor on the completion time.

Dep. var. Correctness (points) Completion Time (minutes)
System size Medium Large Overall Medium Large Overall
Tool Ecl+Exl CodeCity Ecl+Exl CodeCity Ecl+Exl CodeCity Ecl+Exl CodeCity Ecl+Exl CodeCity Ecl+Exl CodeCity

mean 5.462 6.733 3.896 5.050 4.803 5.968 38.809 33.178 44.128 39.644 41.048 36.117
difference +23.27% +29.62% +24.26% -14.51% -10.16% -12.01%
min 3.50 5.00 2.27 3.00 2.27 3.00 31.92 24.67 22.83 27.08 22.83 24.67
max 6.50 8.00 6.00 6.30 6.50 8.00 53.08 39.50 55.92 48.55 55.92 48.55
median 5.800 6.585 3.900 5.100 4.430 6.065 38.000 35.575 48.260 40.610 40.080 36.125
stdev 1.147 .959 1.085 1.031 1.349 1.294 6.789 5.545 11.483 6.963 9.174 6.910

Table 7: Descriptive statistics related to correctness and completion time

The effect of tool on completion time. There was a significant
main effect of the tool on the completion time F (1, 37) = 4.392,
p = .043, indicating that the mean completion time was signifi-
cantly lower for CodeCity users than for Ecl+Exl users.

Overall, there was a decrease in completion time of 12.01% for
CodeCity users (M = 36.117, SD = 6.910) over Ecl+Exl users
(M = 41.048, SD = 9.174). In the case of the medium size
system, there was a 14.51% decrease in completion time of CodeCity
users (M = 33.178, SD = 5.545) over Ecl+Exl users (M =
38.809, SD = 6.789), while in the case of the large size system,
there is a 10.16% decrease in completion time for CodeCity users
(M = 39.644, SD = 6.963) over Ecl+Exl users (M = 44.128,
SD = 11.483). The data shows that the time decrease for CodeCity
users over Ecl+Exl users is slightly lower in the case of the large
system compared to that obtained for the medium system.

The effect of system size on completion time. While not the
goal of the experiment, a significant effect of system size on the com-
pletion time was observed, F (1, 37) = 5.962, p = .020, indicating
that completion time was significantly lower for users analyzing the
medium system than for users analyzing the large system.

The main effect of both tool and object system size on completion
time and the lack of the effect of interaction between tool and object
system size on completion time, are illustrated in Figure 7, as well
as the completion time box plots for the four treatments.

Object system size
LargeMedium

C
om

pl
et

io
n

tim
e

50.00

40.00

30.00

20.00

10.00

0.00

39.64

33.18

44.13

38.81

CodeCity
Ecl+Exl
Tool

EXAMINE VARIABLES=correctness BY Syssize
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL
 /ID=Tool.

EXAMINE VARIABLES=correctness BY Syssize BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 5

Object system size
LargeMedium

C
om

pl
et

io
n

tim
e

60.00

50.00

40.00

30.00

20.00

CodeCity
Ecl+Exl
Tool

Page 9

Figure 7: Means and box plots for completion time

9.3 Result Summary
Correctness. The data allows us to reject the first null hypothesis

H10 in favor of the alternative hypothesis H1, which states that the
tool impacts the correctness of the solutions to program comprehen-
sion tasks. Overall, CodeCity enabled an increase in correctness of
24.26% over Ecl+Exl. This result is statistically significant.

Completion time. We can also reject the second null hypothesis
H20 in favor of the alternative hypothesis H2, which states that the
tool impacts the time required to complete program comprehension
tasks. Overall, CodeCity enabled a completion time reduction of
12.01% over Ecl+Exl. This result is statistically significant.

9.4 Task Analysis
A secondary goal of our experiment was to identify the types of

tasks for which CodeCity provides an advantage over the baseline.
To this end, for each task described in Section 5.5 we compared the
performances—in terms of correctness and time—of the two tools
and reasoned about the potential causes behind the differences. See
Figure 8 for a graphical overview supporting our task analysis5.

A1 - Identifying the convention used to organize unit tests rel-
atively to the tested classes. While Eclipse performed consistently,
CodeCity outperformed it on the medium system and underper-
formed it on the large system. The difference in performance is
partially owed to fact that, in spite of the existence of a number of
classes named *Test, there are no unit tests in the large system.
Only a small number of CodeCity users examined the inheritance
relations, while the majority relied only on name matching. The
time is slightly better for the CodeCity subjects, who benefited from
the visual overview of the system, while Eclipse required scrolling
up and down through the package structure.

A2.1 - Determining the spread of a term among the classes.
CodeCity performed marginally better than Eclipse in both correct-
ness and completion time. In CodeCity, once the term search is
completed, the spread can be visually assessed. In Eclipse, the term
search produces a list of class names. For this task the list showed
classes in many packages belonging to different hierarchies and,
therefore, a dispersed spread may represent a safe guess.

A2.2 - Determining the spread of a term among the classes.
Although the task is similar to the previous, the results in correctness
are quite different: CodeCity significantly outperformed Eclipse by
29–38%. The list of classes and packages in Eclipse, without the
context provided by an overview (i.e., How many other packages
are there in the system?) deceived some of the control subjects
into believing that the spread of the term was dispersed, while
the CodeCity users took advantage of the “big picture” and better
identified the localized spread of this term.

A3 - Estimating impact. CodeCity significantly outperformed
Eclipse in correctness by 40–50%, and was slightly faster than
Eclipse. Finding the caller classes of a given class in Eclipse is not
straightforward. Moreover, the resulting list provides no overview.

A4.1 - Identifying the classes with the highest number of meth-
ods. In terms of correctness, CodeCity was on a par with Excel for
the medium system and slightly better for the large system. In terms
of completion time, Excel was slightly faster than CodeCity. While
CodeCity is faster at building an approximate overview of systems,
a spreadsheet is faster at finding precise answers in large data sets.

B1.1 - Identifying the package with the highest percentage of
god classes. In both correctness and completion time, CodeCity
slightly outperformed Excel. The low scores in correctness of both
tools shows that none of them is good enough to solve this problem
alone. Instead, CodeCity’s visual presentation and Excel ’s precision
could complement each other well.

5Due to space concerns, we do not discuss task B2.2

Correctness (points) Completion time (minutes)

Medium
object
system

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55

C
or

re
ct

ne
ss

 (p
oi

nt
s)

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

C
or

re
ct

ne
ss

 (p
oi

nt
s)

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

Ti
m

e
(m

in
ut

es
)

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

Ti
m

e
(m

in
ut

es
)

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

Legend:

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55

C
or

re
ct

ne
ss

 (p
oi

nt
s)

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

C
or

re
ct

ne
ss

 (p
oi

nt
s)

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

Ti
m

e
(m

in
ut

es
)

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

Ti
m

e
(m

in
ut

es
)

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

Legend:

Large
object
system

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55

C
or

re
ct

ne
ss

 (p
oi

nt
s)

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

C
or

re
ct

ne
ss

 (p
oi

nt
s)

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

Ti
m

e
(m

in
ut

es
)

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

Ti
m

e
(m

in
ut

es
)

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

Legend:

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55

C
or

re
ct

ne
ss

 (p
oi

nt
s)

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

C
or

re
ct

ne
ss

 (p
oi

nt
s)

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

Ti
m

e
(m

in
ut

es
)

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

Ti
m

e
(m

in
ut

es
)

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

Legend:

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55

C
or

re
ct

ne
ss

 (p
oi

nt
s)

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

C
or

re
ct

ne
ss

 (p
oi

nt
s)

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

Ti
m

e
(m

in
ut

es
)

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

Ti
m

e
(m

in
ut

es
)

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

Legend:

Figure 8: Average correctness and completion time per task

B1.2 - Identifying the god class with the highest number of
methods. Both tools obtained good correctness scores, i.e., over
75%. Excel was slightly better in the case of the medium size system,
while CodeCity outperformed Excel in the case of the large system.
While CodeCity’s performance was consistent across systems with
different sizes, Excel’s support was slightly more error-prone in the
case of a larger system, which implies the handling of more data.

B2.1 - Identifying the dominant class-level design. In terms of
correctness, CodeCity outperformed Excel regardless of system size.
The aggregated data found in CodeCity’s disharmony map was less
error-prone than counting rows in Excel. In terms of completion
time, CodeCity significantly outperformed Excel and the difference
was probably caused by the lack of overview in Excel.

Summary. As expected, at focused tasks (e.g., A4.1, B1.1)
CodeCity did not perform better than the baseline, because Ex-
cel is very efficient in finding precise answers (e.g., the largest,
the top N). However, it is surprising that, in most of these tasks,
CodeCity managed to be on par with Excel. At tasks that benefit
from an overview, (e.g., A2.1, A3, or B1.2), CodeCity constantly out-
performed the baseline, in particular in terms of correctness, mainly
because the overview enabled the experimental group to produce a
faster and more confident solution compared to the control group.

10. THREATS TO VALIDITY

10.1 Internal Validity
The internal validity refers to uncontrolled factors that may influ-

ence the effect of the treatments on the dependent variables.
Subjects. To reduce the threat that the subjects may not have

been competent enough, we ensured they had expertise in relevant
fields, using an online questionnaire. Second, to mitigate the threat
that the subjects’ expertise may not have been fairly distributed
across the control and experimental groups, we used randomization
and blocking to assign treatments to subjects.

Tasks. The choice of tasks may have been biased to the advantage
of CodeCity. We alleviate this threat by presenting the tasks in
context with a rationale (described in [20] and left out here due
to space constraints) and the targeted user roles. Moreover, we
included tasks which disadvantage CodeCity (e.g., tasks focused
on precision, rather than on locality). Second, the tasks may have
been too difficult. Third, the allotted time per task may have been
insufficient. To alleviate these two threats we performed a pilot
study and collected feedback about the perceived task difficulty and
time pressure. Moreover, we excluded the only task whose difficulty
was discordantly perceived by the two groups. In addition, this task
was the only one that showed a ceiling effect (i.e., most subjects
used up the entire time) for the affected group.

Baseline. We compared CodeCity with a baseline composed of
two different tools and this might have affected the performance of
the control group. We attenuate this threat by designing the task set
such that no task requires the use of both tools. Moreover, all the
tasks that were to be solved with Eclipse were grouped in the first
part of the experiment, while all the tasks that were to be solved
with Excel were grouped in the second part of the experiment. This
allowed us to minimize the effect of switching between tools to only
one time, between tasks A3 and A4.1. The good scores obtained
by the Ecl+Exl subjects on task A4.1, in both correctness and time,
provide no indication of such a negative effect.

Data differences. CodeCity relies on models of the systems,
while Eclipse works with the source code. The data differences
might have had an effect on the results of the two groups. To
alleviate this threat, we accurately produced the answer model based
on the available data source, i.e., source code or model, and made
sure that the slight differences did not lead to incompatible answers.

Session differences. There were several runs and the differences
among them may have influenced the result. To mitigate this threat,
we performed four different sessions with nine subjects in total
during the pilot phase and obtained a stable and reliable experimen-
tal setup (e.g., instrumentation, questionnaires, experimental kit).
Moreover, there were four industry practitioners who performed the
experiment remotely, controlled merely by their conscience. Given
the value of data points from these practitioners and the reliability
of these particular persons (i.e., one of the experimenters knew them
personally), we trusted them without reservation.

Training. We only trained the subjects with the experimental
treatment and this may have influenced the result of the experiment.
We afforded to do so because we chose a baseline tool set composed
of two state-of-the-practice tools, and we made sure that the control
subjects had a minimum of knowledge with Eclipse. Although
many of the control subjects remarked the fact that we should have
included Excel among the assessed competencies, they scored well
on the tasks solved with Excel, due to the rather simple operations
(i.e., sorting, arithmetic operations between columns) required to
solve them. As many of the CodeCity subjects observed, one hour of
demonstration of a new and mostly unknown tool will never leverage
years of use, even if sparse, of popular tools such as Eclipse or Excel.

10.2 External Validity
This refers to the generalizability of the experiment’s results.
Subjects. To mitigate the threat of the representativeness of the

subjects, we categorized our subjects in four categories along two
axes (i.e., background and experience level) and strived to cover all
categories. We obtained a balanced mix of academics (beginners
and advanced) and industry practitioners (only advanced).

Tasks. Our choice of tasks may not reflect real reverse engineer-
ing situations. We could not match our analysis with any of the
existing frameworks, because they do not support design problem
assessment and, in addition, are either too low-level (e.g., the ques-
tions asked by practitioners during a programming change task by
Sillito et al. [12]), or biased towards dynamic analysis tools (e.g.,
Pacione’s framework [8]). To alleviate this threat, we complemented
our tasks with usage scenarios and targeted users.

Object systems. The representativeness of our object systems is
another threat. We chose to perform the experiment with two differ-
ent object systems, in spite of the added complexity in organizing
the experiment and analyzing the data introduced by a second inde-
pendent variable. The two object systems we chose are well-known
open-source systems of different, realistic sizes and of orthogonal
application domains. It is not known how appropriate they are for
the reverse-engineering tasks we designed, but the variation in the
solutions to the same task shows that the systems are quite different.

Experimenter effect. One of the experimenters is also the author
of the approach and of the tool. This may have influenced any
subjective aspect of the experiment. One instance of this threat
is that the task solutions may not have been graded correctly. To
mitigate this threat, the three authors built a model of the answers
and a grading scheme and then reached consensus. Moreover, the
grading was performed in a similar manner and two of the three
experimenters graded the solutions blinded, i.e., without knowing
the treatments (e.g., tool) used to obtain the solutions. Even if we
tried to mitigate this threat extensively, we cannot exclude all the
possible influences of this factor on the results of the experiment.

11. CONCLUSION
We presented a controlled experiment aimed at evaluating our

software visualization approach based on a city metaphor. We
designed our experiment from a list of desiderata built during an
extensive study of the current body of research. We recruited large
samples of our target population, with subjects from both academia
and industry with a broad range of experience.

The main result of the experiment is that our approach leads
to an improvement, in both correctness (+24%) and completion
time (-12%), over the state-of-the-practice exploration tools. This
result is statistically significant. We believe this is due to both the
visualization as such, as well as the metaphor used by CodeCity, but
we can not measure the exact contribution of each factor.

Apart from an aggregated analysis, we performed a detailed anal-
ysis of each task, which provided a number of insights on the type
of tasks that our approach best supports. Unsurprisingly, in the
case of focused tasks, i.e., tasks which require very precise answers,
CodeCity did not perform better than Eclipse+Excel. Surprisingly,
for most of these tasks, our approach managed to be on a par with
Excel. As for the tasks that benefit from an overview of the system,
CodeCity constantly outperformed the baseline.

Finally, we designed our experiment with repeatability in mind.
In [20], we provided the complete raw and processed data of this
experiment (i.e., the pre-experiment, in-experiment and debriefing
questionnaires, solution oracles and grading systems, correction
scores and measured completion time) to allow reviewers to better
evaluate the experiment’s design and results, and fellow researchers
to repeat the experiment, or reuse its design as a base for their own.

Acknowledgments. We gratefully acknowledge Radu Marinescu, Mircea
Lungu, Alberto Bacchelli, Lile Hattori, Oscar Nierstrasz, Serge Demeyer,
Fabrizio Perin, and Quinten Soetens for helping us with the experiment. We
thank our participants: the developers in Bologna and Lugano, the SCG in
Bern, and the students in Lugano and Antwerp. We thank the European
Smalltalk User Group (http://esug.org) for financial support.

12. REFERENCES
[1] B. Cornelissen, A. Zaidman, B. V. Rompaey, and A. van Deursen.

Trace visualization for program comprehension: A controlled
experiment. In Proceedings of the 17th IEEE International Conference
on Program Comprehension, pages 100–109. IEEE CS Press, 2009.

[2] R. Koschke. Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey. Journal of
Software Maintenance, 15(2):87–109, 2003.

[3] C. F. J. Lange and M. R. V. Chaudron. Interactive views to improve
the comprehension of UML models - an experimental validation. In
ICPC ’07: Proceedings of the 15th International Conference on
Program Comprehension, pages 221–230. IEEE CS Press, 2007.

[4] M. Lanza and S. Ducasse. Polymetric views — a lightweight visual
approach to reverse engineering. Transactions on Software
Engineering (TSE), 29(9):782–795, Sept. 2003.

[5] H. Levene. Robust tests for equality of variances. In I. Olkin, editor,
Contributions to Probability and Statistics: Essays in Honor of Harold
Hotelling, pages 278–292. Stanford University Press, 1960.

[6] A. Marcus, D. Comorski, and A. Sergeyev. Supporting the evolution of
a software visualization tool through usability studies. In Proceedings
of the 13th International Workshop on Program Comprehension,
pages 307–316. IEEE CS Press, 2005.

[7] R. Marinescu. Detection strategies: Metrics-based rules for detecting
design flaws. In ICSM ’04: Proceedings of the 20th IEEE
International Conference on Software Maintenance, pages 350–359.
IEEE CS Press, 2004.

[8] M. J. Pacione, M. Roper, and M. Wood. A novel software visualisation
model to support software comprehension. In Proceedings of WCRE
2004, pages 70–79. IEEE CS Press, 2004.

[9] M. D. Penta, R. Stirewalt, and E. Kraemer. Designing your next
empirical study on program comprehension. In ICPC ’07:
Proceedings of the 15th International Conference on Program
Comprehension, pages 281–285. IEEE CS Press, 2007.

[10] J. Quante. Do dynamic object process graphs support program
understanding? - a controlled experiment. In ICPC ’08: Proceedings
of the 16th IEEE International Conference on Program
Comprehension, pages 73–82. IEEE CS Press, 2008.

[11] S. Shapiro and M. Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 52(3–4):591–611, 1965.

[12] J. Sillito, G. C. Murphy, and K. De Volder. Questions programmers
ask during software evolution tasks. In SIGSOFT ’06/FSE-14:
Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of Software Engineering, pages 23–34. ACM Press, 2006.

[13] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price, editors.
Software Visualization - Programming as a Multimedia Experience.
The MIT Press, 1998.

[14] M.-A. D. Storey, K. Wong, and H. A. Müller. How do program
understanding tools affect how programmers understand programs? In
WCRE ’97: Proceedings of the Fourth Working Conference on Reverse
Engineering, pages 12–21. IEEE CS Press, 1997.

[15] R. Wettel and M. Lanza. Program comprehension through software
habitability. In Proceedings of ICPC 2007, pages 231–240. IEEE CS
Press, 2007.

[16] R. Wettel and M. Lanza. Visualizing software systems as cities. In
Proceedings of VISSOFT 2007, pages 92–99. IEEE CS Press, 2007.

[17] R. Wettel and M. Lanza. CodeCity: 3D visualization of large-scale
software. In Proceedings of ICSE 2008, Tool Demo Track, pages
921–922. ACM Press, 2008.

[18] R. Wettel and M. Lanza. Visual exploration of large-scale system
evolution. In Proceedings of the 15th Working Conference on Reverse
Engineering, pages 219–228. IEEE CS Press, 2008.

[19] R. Wettel and M. Lanza. Visually localizing design problems with
disharmony maps. In Proceedings of the 4th Symposium on Software
Visualization, pages 155–164. ACM Press, 2008.

[20] R. Wettel, M. Lanza, and R. Robbes. Empirical validation of
CodeCity: A controlled experiment. Technical Report 2010/05,
University of Lugano, June 2010. http://www.inf.usi.ch/
research_publication.htm?id=60.

[21] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in software engineering: an introduction.
Kluwer Academic Publishers, 2000.

http://esug.org
http://www.inf.usi.ch/research_publication.htm?id=60
http://www.inf.usi.ch/research_publication.htm?id=60

	Introduction
	CodeCity in a Nutshell
	Related Work
	Experimental Design Wish List
	Experimental Design
	Research Questions & Hypotheses
	Dependent and Independent Variables
	Finding a Baseline
	Object Systems

	Controlled Variables
	Treatments
	Tasks

	Operation
	The Pilot Study
	Experimental Runs

	Data Collection
	Personal Information
	Timing Data
	Correctness Data
	Participants' Feedback

	Data Analysis
	Preliminary Data Analysis
	Outlier Analysis
	Subject Analysis

	Results
	Analysis Results on Correctness
	Analysis Results on Completion Time
	Result Summary
	Task Analysis

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	References

