SpyWare: A Change-Aware Development Toolset

Romain Robbes
Faculty of Informatics, University of Lugano

romain.robbes@]Iu.unisi.ch

ABSTRACT

Our research is driven by the motivation tlthtinge must be put
in the center, if one wants to understand the complex presess
software evolution. We built a toolset named SpyWare whirsh,
ing a monitoring plug-in for integrated development enmim@nts
(IDEs), tracks the changes that a developer performs ongagro

Michele Lanza
Faculty of Informatics, University of Lugano

michele.lanza@unisi.ch

e monitor developer activity as it happens in the IDE, using a
monitoring plugin,

e convert the changes the developer did to the program to first-
class change operations,

e stores the changes in a repository for later use,

asthey happen. SpyWare stores these first-class changes in a change

repository and offers a plethora of productivity-enhagdbE ex-
tensions to exploit the recorded information.

1. INTRODUCTION

The only constant in software is that it changes: Softwarstmu
be continuously tailored to fit new or updated requiremefitsis
has been formulated in Lehman’s first law of software evohufd],
which states that a software system must be continuousiyteda
or become less and less useful. Given this situation, itrigris4
ing that most development tools (with the exception of \@risig
systems) still consider a software system as its source colye
disregarding any available historical information. Tformation,
when available in the form of versioning system archives, een
proven to be useful for several applicatiohs [5]1[11] anstéoed
the quickly growing community dedicated to the mining oftsof
ware repositories [311]. However, the evolutionary infation
mostly used, versioning system archives (primarily frorategns
such as CVS and Subversion), suffers from several problees (
tailed in [@], [4]), such as incomplete data sources andenois

With SpyWare our goal was to start from a clean slate by captur
ing changesas they happen at the level of program entities rather
than files and lines. For instance, our format allows us teriles
refactorings. Instead of relying on the developer to saanghs,
our tool chain monitors changes as they happen in the IDEve ha
a finer granularity of changes. This allows us to model thengha
history as a sequence of first-class change operationsy thtm a
sequence of successive versions of the program. Since wéeise
IDE as an information source, we exploit the integratiorhvtiie
IDE at its maximum, by providing our enhancements as IDErexte
sions rather than stand-alone tools. More than creatimgestools,
we thus created the SpyWare platform, which allows us to:

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ICSE’08, May 10-18 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

e record higher-level changes such as refactorings,

e generate, by executing change operations, part or the whole
of the system at any point in time,

e access the change history of any package, class, instarce va
able, method, or statement defined in the system,

e show the differences between two states of the program, us-
ing color-coding to reflect the type of changes,

e measure the extent of changes using structural metrics and
the type of changes that were performed,

e visualize how the system was changed with metrics, graphs,
and interactive visualizations,

e generalize concrete changes to the system to reusable pro-
gram transformations,

e access all of its functionality from the IDE, rather than a
stand-alone tool, to ease its usage.

In the following, we describe the approach and the changeesmod
we defined, before detailing the SpyWare toolset.

2. CHANGE-BASED SOFTWARE EVOLU-
TION IN A NUTSHELL

SpyWare is based on our work @hange-Based Software Evo-
lution (CBSE) [1], whose aim is to accurately model how software
evolves by treatinghange as a first-class entity.

The Model. We model software evolution as a sequence of
changes that take a system from one dlatthe next by means
of semantic (i.e., non text-based) transformations. Tiesesfor-
mations are inferred from the activity recorded by the eveit-
fication system of IDEs such as Eclipse, whenever the degelop
incrementally modifies the system. Examples are the motidita
of the body of a method or a class, but also higher-level chang
offered by refactoring engines. In short, we do not view tis¢dny
of a software system as a sequence of versions, but as thefsum o
change operations which brought the system to its actual state.

lWe define the state as being the source code of the program, as
opposed to the dynamic run-time state

Atomic Change Operations

Creation creates a noddor an entity of a given type

Addition adds a nodae as a child of a given parept

Removal removes a nodefrom the childs of its paremt

Property change changes valuef propertyp of noden

Insertion inserts node at locationm as a child of (method) parept

Deletion deletes a nodefrom locationmin the children of the given parept

Composite Change Oper ations

Developer action

A unit of change from a developer’s viewmpoeé.g., changing the definition of a class, adding or changi method. It can contain several atomic

changes, e.g., a method addition contains a creation, aticmdaind a name change for itself, and contains all the chsiyolved in the creation and

the addition of each body statement

Refactoring

A behavior-preserving automatic code tramséion [2], e.g., theename method refactoring involves changing a method’s name, and alreefees

from the old method name to the new name. These developenaatan be grouped into a higher-level entity representiagefactoring itself

Development session

It aggregates all changes (refagtodndeveloper actions) done during a single developmasiaeby a developer. We used it in evolution analysis,

as it is the equivalent in size to a versioning system conWit provide more details on sessionslih [8]

Table 1. Change operations supported by Spyware.

Program Representation. We represent programs as domain-
specific entities rather than text files. Since we focus omabj
oriented programs, we store and analyse constructs sutasses

3. TOOLSBUILT ON TOP OF SPYWARE

On top of the change-recording and storing facility we déscr
above, we built several tools. These tools, some of whicklaman

and methods, not files and lines. Thus, a software system is anin Figureld, are:

evolving abstract syntax tree (AST) containing nodes whégire-
sent packages, classes, methods, variables and stateeride
a is a child of a nodeb if a containsb, e.g., a package contains
classes. Nodes hayeoperties, which vary depending on the node
type. For a class we can have its name and superclass; fohadanet
its name, return type and access modifier; for a variableaisa)
type and access modifier, etc. The name of an entity is a fyoper
since we provide identity with unique identifiers. Each ASifity
has achange history containing all changes applied to it during the
system’s evolution.

Change Operations. They represent the evolution of the sys-
tem under study: Change operations are the actions a develop

performs when he changes a program, which in our model are cap

tured and reified. They represent the transition from one sif
the evolving system to the next. Change operation®a@itable:
A change operatior applied to the stata of the program yields

the staten+1 of the program. Some examples of change operations

are: adding/removing classes/methods to/from the systbemg-
ing the implementation of a method, or refactoririgs [2]. \Meort
atomic andcomposite change operations (detailed in Table 1):
Atomic Change Operations. Atomic changes are, at the finest
level, operations on the program’s AST. Atomic change dpara

are executable, and can be undone: An atomic change contains

all the necessary information to update the model by itseifl to
compute its opposite atomic change (to allow undo). By iiega
on the list of changes we can generate all the states thegmogr
went through during its evolution.

Composite Change Operations. While atomic changes model the
evolution of programs, the finest level of granularity is abtays
the best suited. Representing the entire evolution of a&sysinly
by its atomic modifications leads to an overwhelming massof i
formation. Hence we abstract change operations into hilgvet
composite changes, e.g., moving a class from packageto pack-
ageB consists in removing it fromh and adding it tdB. These two
atomic changes can be grouped in a simgbee class change.

The Change Repository. Changes are captured as they happen
in the IDE, through the SpyWare monitoring plugin, whichcks
the developer’s actions. It reacts to them by querying the 1&r
the information it needs to model the developer’s actiorshasige
operations and stores them in a change repository, wheyeatiee
used by a plethora of tools described in the next section.

The Launcher (1). Itis the starting point to use several of the tools
included in spyware. The launcher allows us to load the
model of a system in the environment. Beyond that, it al-
lows us to choose the model we should work on if several
of those are loaded, and launch other tools, such as metric
graphs, change lists, and view browsers.

The Metric Graph (2). Itfollows the evolution of one or more struc-
tural metrics (i.e., number of classes, number of methods, a
erage size of methods) on one or more projects. The metric
graph is interactive and allows zooming, as well as summon-
ing one or more view browsers at any point in time.

The Change List. Lists all the changes done to a part or the whole
system, in a hierarchy from sessions, refactorings, dpeelo
level actions, up to atomic changes. The change list support
simple queries to filter the changes it displays.

The View Browser (3). It shows the code of the system at a spe-
cific date. Multiple browsers can be open concurrently at
several distinct dates of the evolution of the system, afigw
comparisons between several versions of the system. These
browsers feature forward and back buttons to advance or go
backwards in time.

The Change Matrix (4). It is an interactive visualization showing
the changes made to the system across time (on the x axis),
and several entities (on the y axis). By default, the change
matrix shows the changes to all classes and methods in the
system, but it can be restrained to a part of the system. Ad-
ditionaly, it can show changes to packages and classes rathe
than classes and methods. In all cases, entities are laid out
in the order they have been created. Developer-level clsange
are shown as colored squares on the figure, according to the
type of change that was performed. They can be expanded
to show the evolution of the size of the entity they modified.
This visualization allows one to grasp the evolution of tee d
sign of a system at a glance. Several patterns, such as god
classes, data classes, or methods being too tightly coupled
(when they are systemically modified together), can be de-
tected with the change matrix.

The Session Browser (5). This tool presents all the coding sessions SpyWare currently features two implementations, one ine@gu
of the system visually. The history of the system is summed Smalltalk, and one in Java as an Eclipse plufgin [10]. Thegype
up in the smallest space possible thanks to a compact fig-has not been optimized for performance or space, but botnpsr
ure, the session sparkline. Inspired by Tufte's concept, a ters are acceptable on a current laptop (2.4Ghz).
sparkline is a word-sized, high density graphic. Each of the Tool Availability. SpyWare can be obtained at
sparklines encode the length of the session (with its [gngth |[ntTp: 77 Waw. i nf . Uni Si. ch/ phd/ r 0bbes/ Spywar e. ht m
as well as the type (with colors) and intensity (with the léng The Software Animator can be found at:
of the bars) of activity that occured through it. Each spaekl nttp://atelier.inf.unisi.ch/~garciaal/SA/ I ndex. ht n
is interactive, and can show the changes performed in it with
tooltips. Sessions can be searched for the use of a word.5, REFERENCES
Change-based metrics on each sessions are shown on the
right and allow to compare session with each other. If a
session is deemed interesting, it can be inspected with the
session inspector.

[1] S. Diehl, H. Gall, and A. E. Hassan, editoPsoceedings of
the 2006 I nternational Workshop on Mining Software
Repositories, MSR 2006, Shanghai, China, May 22-23, 2006.

ACM, 2006.
The Session Inspector (6). The session inspector focuses on a sin- [2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
gle development session. It allows each change in the sessio Refactoring: Improving the Design of Existing Code.
to be replayed. The tool can show the state of an entity before Addison Wesley, 1999.
and after each change using text highlighting depending on [3] A. E. Hassan, R. C. Holt, and S. Diehl, editoPsoceedings
the nature of changes performed. The tool is able to identify of the 2005 International Wbrkshop on Mining Software
that, for instance, a single variable was added to a method, Repositories, MSR 2005, Saint Louis, Missouri, USA, May
rather than just telling that a variable was changed. ltgeisa 17, 2005. ACM, 2005.
is described in detail ir[8]. [4] M. Lehman and L. BeladyProgram Evolution: Processes of

Software Change. London Academic Press, London, 1985.
[5] V. B. Livshits and T. Zimmermann. Dynamine: finding

common error patterns by mining software revision hisgrie

In Proceedings of the 10th European Software Engineering

Conference held jointly with 13th ACM SGSOFT

International Symposium on Foundations of Software

Engineering (ESEC/FSE 2005), pages 296—-305. ACM Press,

The Software Animator (7). Currently a stand-alone tool, this tool
replays the history of a system not as a single visualization
but as an interactive movie. Packages, classes and methods
are shown as 3D objects which grow, reduce or blink when
they are changed. The speed of the playback can be set from
real-time to making hours or days pass in a few seconds. The
animation can be paused, rotated, zoomed, and each entity

can be queried to show extra information. 2005.
[6] R. Robbes and M. Lanza. Versioning systems for evolution

The Change Factory. The Change Factory is a tool which uses the research. IProceedings of IWPSE 2005 (8th I nternational

change history to ease future changes to the system. Based Workshop on Principles of Software Evolution), pages

on a concrete change performed previously on the system, 155-164. IEEE CS Press, 2005.

the programmer can use the Change Factory to create a reusabl7] R. Robbes and M. Lanza. A change-based approach to

generic program transformation which can be applied inrothe software evolutionElectronic Notes in Theoretical

contexts afterwards. The Change Factory allows concrete en Computer Science (ENTCS), 166:93-109, Jan. 2007.

tities to be converted to variables in the transformatiens) [8] R. Robbes and M. Lanza. Characterizing and understgndin

allows to insert higher-level control structures such apo development sessions. Rroceedings of ICPC 2007 (15th

and conditionals to make the transformation more general. International Conference on Program Comprehension),

pages 155-164, 2007.

R. Robbes, M. Lanza, and M. Lungu. An approach to
software evolution based on semantic change. In
Proceedings of FASE 2007 (10th International Conference
on Fundamental Approaches to Software Engineering),
pages 27-41, 2007.

[10] Y. Sharon. Eclipseye - spying on eclipse. Bachelorésth,
University of Lugano, June 2007.

The Optimist Completer. Still under development, this tool uses the [9]
change history of a system to make the code completion tool
of the IDE more accurate. By default, code completion tools
return matches alphabetically. The Optimist Completer re-
orders the matches based on the usage of the entities to make
the most likely to be used match reach the top of the list.

4. TOOL INFORMATION [11] J.Sliwerski, T. Zimmermann, and A. Zeller. Hatari: raising

Experience. The SpyWare toolset has been used in a variety of risk awareness. IRroceedings of the 10th European
contexts. We used the View Browser, the Metric Graphs and the Software Engineering Conference held jointly with 13th
Change Matrix to help us understand the development of ®stud ACM SIGSOFT International Symposium on Foundations of
projects [T[®]. We also used the Session Browser and théoBess Software Engineering (ESEC/FSE 2005), pages 107-110,
Inspector to browse more than 300 development sessionsyef Sp New York, NY, USA, 2005. ACM Press.

Ware itself, as well as more than 100 development sessionsdr
third-party projectl[B]. The ability offered by the toolset seam-
lessly move from one level of detail to the other allows therus
to both gain a high-level view of the system, and understéed t
evolution of single entities.
Implementation. SpyWare has been developed over the last 3

years as part of a PhD thesis. It has been extensively usetlima
ber of case studies and can thus be considered a matureypeatot

http://www.inf.unisi.ch/phd/robbes/spyware.html
http://atelier.inf.unisi.ch/~garciaal/SA/index.html

X B spyWware

openBrowser | graphics || ex]
% Spyware Metric Graph

odel|| chooseModel| changeViewer || ch

SpyWare Coding Sessi:

4 b vud

e e

D‘|ﬂl,

X B Spyware view browser on: Project | on: 28606-84-84700:01:57+00:00 Palle)

RPG-Tests Al Enemies initialize
tmpRPG Lacché createlLanzaroth
— TEST SDldieI’
Dangeon Master
Spells Dragon
' Weapons
|| Enemies
Rooms
Potions v instance @ ? class
createlLanzaroth
I mydragon |
mydragon = self new.
— S —
—— | —
—— —
i ﬂ_ P~
. . = dﬂ
‘\n i BUGFIXING —
DECO
FOCUSED
" INACTIVE
. s INCREMENTAL
v LDECO
TRy L il . LPAINT
- i MASON
" PAINT
RESTOR
L FOCUS
PN TN) aus | threshold session metrics:
" =~ BLITZ 2.759
Lanluu o il ™ ks i HIHALF 2.759
o LONG 2.758

0.
32.
= Py 6.0
- [- | - f—— - - 1.0
0.0
0.0
‘ 0.0
1.0
0.0
o . o
g b # PR P - 5
- S # | mewe o mie x " o £S5 emn mmieselo o wee wl cmie
6.0
v 173.0 v
<
Pr——

R processbelerion: op
ree |

tres = op delete.

SWehange deleteEntity: tre entity
fromParent: op perent entity
root method
sibling:

op performOperationDa; treel

Type: Method, name: alignTextinCanvas:

R procesbeletion: op i "
Itree |
tree i op delete.

SWChange deleteEnity: tree entty (K8
fromParent op parent entty
sblin

0p performOperationon; treel

Date: 18/9/2007 Time: 10:12:13

Lo seconp

Figure 1. The SpyWaretoolset

	Introduction
	Change-based Software Evolution in a Nutshell
	Tools built on top of SpyWare
	Tool Information
	References

