
SpyWare: A Change-Aware Development Toolset

Romain Robbes
Faculty of Informatics, University of Lugano

romain.robbes@lu.unisi.ch

Michele Lanza
Faculty of Informatics, University of Lugano

michele.lanza@unisi.ch

ABSTRACT
Our research is driven by the motivation thatchange must be put
in the center, if one wants to understand the complex processes of
software evolution. We built a toolset named SpyWare which,us-
ing a monitoring plug-in for integrated development environments
(IDEs), tracks the changes that a developer performs on a program
as they happen. SpyWare stores these first-class changes in a change
repository and offers a plethora of productivity-enhancing IDE ex-
tensions to exploit the recorded information.

1. INTRODUCTION
The only constant in software is that it changes: Software must

be continuously tailored to fit new or updated requirements.This
has been formulated in Lehman’s first law of software evolution [4],
which states that a software system must be continuously adapted,
or become less and less useful. Given this situation, it is surpris-
ing that most development tools (with the exception of versioning
systems) still consider a software system as its source codeonly,
disregarding any available historical information. This information,
when available in the form of versioning system archives, has been
proven to be useful for several applications [5], [11] and fostered
the quickly growing community dedicated to the mining of soft-
ware repositories [3, 1]. However, the evolutionary information
mostly used, versioning system archives (primarily from systems
such as CVS and Subversion), suffers from several problems (de-
tailed in [6], [7]), such as incomplete data sources and noise.

With SpyWare our goal was to start from a clean slate by captur-
ing changesas they happen at the level of program entities rather
than files and lines. For instance, our format allows us to describe
refactorings. Instead of relying on the developer to save changes,
our tool chain monitors changes as they happen in the IDE to have
a finer granularity of changes. This allows us to model the change
history as a sequence of first-class change operations, rather than a
sequence of successive versions of the program. Since we usethe
IDE as an information source, we exploit the integration with the
IDE at its maximum, by providing our enhancements as IDE exten-
sions rather than stand-alone tools. More than creating single tools,
we thus created the SpyWare platform, which allows us to:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

• monitor developer activity as it happens in the IDE, using a
monitoring plugin,

• convert the changes the developer did to the program to first-
class change operations,

• stores the changes in a repository for later use,

• record higher-level changes such as refactorings,

• generate, by executing change operations, part or the whole
of the system at any point in time,

• access the change history of any package, class, instance vari-
able, method, or statement defined in the system,

• show the differences between two states of the program, us-
ing color-coding to reflect the type of changes,

• measure the extent of changes using structural metrics and
the type of changes that were performed,

• visualize how the system was changed with metrics, graphs,
and interactive visualizations,

• generalize concrete changes to the system to reusable pro-
gram transformations,

• access all of its functionality from the IDE, rather than a
stand-alone tool, to ease its usage.

In the following, we describe the approach and the change model
we defined, before detailing the SpyWare toolset.

2. CHANGE-BASED SOFTWARE EVOLU-
TION IN A NUTSHELL

SpyWare is based on our work onChange-Based Software Evo-
lution (CBSE) [7], whose aim is to accurately model how software
evolves by treatingchange as a first-class entity.

The Model. We model software evolution as a sequence of
changes that take a system from one state1 to the next by means
of semantic (i.e., non text-based) transformations. Thesetransfor-
mations are inferred from the activity recorded by the eventnoti-
fication system of IDEs such as Eclipse, whenever the developer
incrementally modifies the system. Examples are the modification
of the body of a method or a class, but also higher-level changes
offered by refactoring engines. In short, we do not view the history
of a software system as a sequence of versions, but as the sum of
change operations which brought the system to its actual state.
1We define the state as being the source code of the program, as
opposed to the dynamic run-time state

Atomic Change Operations

Creation creates a noden for an entity of a given typet
Addition adds a noden as a child of a given parentp
Removal removes a noden from the childs of its parentp
Property change changes valuev of propertyp of noden
Insertion inserts noden at locationm as a child of (method) parentp.
Deletion deletes a noden from locationm in the children of the given parentp.

Composite Change Operations

Developer action A unit of change from a developer’s viewpoint, e.g., changing the definition of a class, adding or changing a method. It can contain several atomic
changes, e.g., a method addition contains a creation, an addition and a name change for itself, and contains all the changes involved in the creation and
the addition of each body statement

Refactoring A behavior-preserving automatic code transformation [2], e.g., therename method refactoring involves changing a method’s name, and all references
from the old method name to the new name. These developer actions can be grouped into a higher-level entity representing the refactoring itself

Development session It aggregates all changes (refactorings or developer actions) done during a single development session by a developer. We used it in evolution analysis,
as it is the equivalent in size to a versioning system commit.We provide more details on sessions in [8]

Table 1: Change operations supported by Spyware.

Program Representation. We represent programs as domain-
specific entities rather than text files. Since we focus on object-
oriented programs, we store and analyse constructs such as classes
and methods, not files and lines. Thus, a software system is an
evolving abstract syntax tree (AST) containing nodes whichrepre-
sent packages, classes, methods, variables and statements. A node
a is a child of a nodeb if a containsb, e.g., a package contains
classes. Nodes haveproperties, which vary depending on the node
type. For a class we can have its name and superclass; for a method
its name, return type and access modifier; for a variable its name,
type and access modifier, etc. The name of an entity is a property
since we provide identity with unique identifiers. Each AST entity
has achange history containing all changes applied to it during the
system’s evolution.

Change Operations. They represent the evolution of the sys-
tem under study: Change operations are the actions a developer
performs when he changes a program, which in our model are cap-
tured and reified. They represent the transition from one state of
the evolving system to the next. Change operations areexecutable:
A change operationc applied to the staten of the program yields
the staten+1 of the program. Some examples of change operations
are: adding/removing classes/methods to/from the system,chang-
ing the implementation of a method, or refactorings [2]. We support
atomic andcomposite change operations (detailed in Table 1):

Atomic Change Operations. Atomic changes are, at the finest
level, operations on the program’s AST. Atomic change operations
are executable, and can be undone: An atomic change contains
all the necessary information to update the model by itself,and to
compute its opposite atomic change (to allow undo). By iterating
on the list of changes we can generate all the states the program
went through during its evolution.

Composite Change Operations. While atomic changes model the
evolution of programs, the finest level of granularity is notalways
the best suited. Representing the entire evolution of a system only
by its atomic modifications leads to an overwhelming mass of in-
formation. Hence we abstract change operations into higher-level
composite changes, e.g., moving a class from packageA to pack-
ageB consists in removing it fromA and adding it toB. These two
atomic changes can be grouped in a singlemove class change.

The Change Repository. Changes are captured as they happen
in the IDE, through the SpyWare monitoring plugin, which tracks
the developer’s actions. It reacts to them by querying the IDE for
the information it needs to model the developer’s actions aschange
operations and stores them in a change repository, where they are
used by a plethora of tools described in the next section.

3. TOOLS BUILT ON TOP OF SPYWARE
On top of the change-recording and storing facility we described

above, we built several tools. These tools, some of which areshown
in Figure 1, are:

The Launcher (1). It is the starting point to use several of the tools
included in spyware. The launcher allows us to load the
model of a system in the environment. Beyond that, it al-
lows us to choose the model we should work on if several
of those are loaded, and launch other tools, such as metric
graphs, change lists, and view browsers.

The Metric Graph (2). It follows the evolution of one or more struc-
tural metrics (i.e., number of classes, number of methods, av-
erage size of methods) on one or more projects. The metric
graph is interactive and allows zooming, as well as summon-
ing one or more view browsers at any point in time.

The Change List. Lists all the changes done to a part or the whole
system, in a hierarchy from sessions, refactorings, developer-
level actions, up to atomic changes. The change list supports
simple queries to filter the changes it displays.

The View Browser (3). It shows the code of the system at a spe-
cific date. Multiple browsers can be open concurrently at
several distinct dates of the evolution of the system, allowing
comparisons between several versions of the system. These
browsers feature forward and back buttons to advance or go
backwards in time.

The Change Matrix (4). It is an interactive visualization showing
the changes made to the system across time (on the x axis),
and several entities (on the y axis). By default, the change
matrix shows the changes to all classes and methods in the
system, but it can be restrained to a part of the system. Ad-
ditionaly, it can show changes to packages and classes rather
than classes and methods. In all cases, entities are laid out
in the order they have been created. Developer-level changes
are shown as colored squares on the figure, according to the
type of change that was performed. They can be expanded
to show the evolution of the size of the entity they modified.
This visualization allows one to grasp the evolution of the de-
sign of a system at a glance. Several patterns, such as god
classes, data classes, or methods being too tightly coupled
(when they are systemically modified together), can be de-
tected with the change matrix.

The Session Browser (5). This tool presents all the coding sessions
of the system visually. The history of the system is summed
up in the smallest space possible thanks to a compact fig-
ure, the session sparkline. Inspired by Tufte’s concept, a
sparkline is a word-sized, high density graphic. Each of the
sparklines encode the length of the session (with its length),
as well as the type (with colors) and intensity (with the length
of the bars) of activity that occured through it. Each sparkline
is interactive, and can show the changes performed in it with
tooltips. Sessions can be searched for the use of a word.
Change-based metrics on each sessions are shown on the
right and allow to compare session with each other. If a
session is deemed interesting, it can be inspected with the
session inspector.

The Session Inspector (6). The session inspector focuses on a sin-
gle development session. It allows each change in the session
to be replayed. The tool can show the state of an entity before
and after each change using text highlighting depending on
the nature of changes performed. The tool is able to identify
that, for instance, a single variable was added to a method,
rather than just telling that a variable was changed. Its usage
is described in detail in [8].

The Software Animator (7). Currently a stand-alone tool, this tool
replays the history of a system not as a single visualization,
but as an interactive movie. Packages, classes and methods
are shown as 3D objects which grow, reduce or blink when
they are changed. The speed of the playback can be set from
real-time to making hours or days pass in a few seconds. The
animation can be paused, rotated, zoomed, and each entity
can be queried to show extra information.

The Change Factory. The Change Factory is a tool which uses the
change history to ease future changes to the system. Based
on a concrete change performed previously on the system,
the programmer can use the Change Factory to create a reusable
generic program transformation which can be applied in other
contexts afterwards. The Change Factory allows concrete en-
tities to be converted to variables in the transformations,and
allows to insert higher-level control structures such as loops
and conditionals to make the transformation more general.

The Optimist Completer. Still under development, this tool uses the
change history of a system to make the code completion tool
of the IDE more accurate. By default, code completion tools
return matches alphabetically. The Optimist Completer re-
orders the matches based on the usage of the entities to make
the most likely to be used match reach the top of the list.

4. TOOL INFORMATION
Experience. The SpyWare toolset has been used in a variety of

contexts. We used the View Browser, the Metric Graphs and the
Change Matrix to help us understand the development of 9 student
projects [7, 9]. We also used the Session Browser and the Session
Inspector to browse more than 300 development sessions of Spy-
Ware itself, as well as more than 100 development sessions from a
third-party project [8]. The ability offered by the toolsetto seam-
lessly move from one level of detail to the other allows the user
to both gain a high-level view of the system, and understand the
evolution of single entities.

Implementation. SpyWare has been developed over the last 3
years as part of a PhD thesis. It has been extensively used in anum-
ber of case studies and can thus be considered a mature prototype.

SpyWare currently features two implementations, one in Squeak
Smalltalk, and one in Java as an Eclipse plugin [10]. The prototype
has not been optimized for performance or space, but both parame-
ters are acceptable on a current laptop (2.4Ghz).

Tool Availability. SpyWare can be obtained at
http://www.inf.unisi.ch/phd/robbes/spyware.html

The Software Animator can be found at:
http://atelier.inf.unisi.ch/~garciaal/SA/index.html

5. REFERENCES
[1] S. Diehl, H. Gall, and A. E. Hassan, editors.Proceedings of

the 2006 International Workshop on Mining Software
Repositories, MSR 2006, Shanghai, China, May 22-23, 2006.
ACM, 2006.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

[3] A. E. Hassan, R. C. Holt, and S. Diehl, editors.Proceedings
of the 2005 International Workshop on Mining Software
Repositories, MSR 2005, Saint Louis, Missouri, USA, May
17, 2005. ACM, 2005.

[4] M. Lehman and L. Belady.Program Evolution: Processes of
Software Change. London Academic Press, London, 1985.

[5] V. B. Livshits and T. Zimmermann. Dynamine: finding
common error patterns by mining software revision histories.
In Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (ESEC/FSE 2005), pages 296–305. ACM Press,
2005.

[6] R. Robbes and M. Lanza. Versioning systems for evolution
research. InProceedings of IWPSE 2005 (8th International
Workshop on Principles of Software Evolution), pages
155–164. IEEE CS Press, 2005.

[7] R. Robbes and M. Lanza. A change-based approach to
software evolution.Electronic Notes in Theoretical
Computer Science (ENTCS), 166:93–109, Jan. 2007.

[8] R. Robbes and M. Lanza. Characterizing and understanding
development sessions. InProceedings of ICPC 2007 (15th
International Conference on Program Comprehension),
pages 155–164, 2007.

[9] R. Robbes, M. Lanza, and M. Lungu. An approach to
software evolution based on semantic change. In
Proceedings of FASE 2007 (10th International Conference
on Fundamental Approaches to Software Engineering),
pages 27–41, 2007.

[10] Y. Sharon. Eclipseye - spying on eclipse. Bachelor’s thesis,
University of Lugano, June 2007.

[11] J. Śliwerski, T. Zimmermann, and A. Zeller. Hatari: raising
risk awareness. InProceedings of the 10th European
Software Engineering Conference held jointly with 13th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE 2005), pages 107–110,
New York, NY, USA, 2005. ACM Press.

http://www.inf.unisi.ch/phd/robbes/spyware.html
http://atelier.inf.unisi.ch/~garciaal/SA/index.html

1

2

3

4

5

6

7

Figure 1: The SpyWare toolset

	Introduction
	Change-based Software Evolution in a Nutshell
	Tools built on top of SpyWare
	Tool Information
	References

